Volume 30 Issue 6
Jun.  2018
Turn off MathJax
Article Contents
Zhou Pu. Fundamentals of high-average-power fiber laser technology: Mode[J]. High Power Laser and Particle Beams, 2018, 30: 060201. doi: 10.11884/HPLPB201830.180087
Citation: Zhou Pu. Fundamentals of high-average-power fiber laser technology: Mode[J]. High Power Laser and Particle Beams, 2018, 30: 060201. doi: 10.11884/HPLPB201830.180087

Fundamentals of high-average-power fiber laser technology: Mode

doi: 10.11884/HPLPB201830.180087
  • Received Date: 2018-03-25
  • Rev Recd Date: 2018-04-17
  • Publish Date: 2018-06-15
  • Mode (transverse mode) is one of the key parameters, which could be deduced from the status of the fiber lasers with different mode properties. The relationship between mode and beam quality is analyzed by numerical calculations, based on which it is pointed out that mode decomposition is the key to well understand the mode constitution and beam quality, then the common mode decomposition techniques are introduced. Aimed at mode instability (MI), which is a new phenomenon that prohibits power scaling of fiber laser, various parameters affecting the threshold of MI are summarized, then the physical mechanism and technique to increase the threshold are concluded. The recent progress on mode control of fiber laser is introduced from the viewpoint of high-order-mode suppression and structured light field generation.
  • loading
  • [1]
    Shiner B. Recent progress in high power fiber lasers[R]. Laser Applications Workshop, 2009.
    [2]
    Shcherbakov E, Fomin V, Abramov A, et al. Industrial grade 100 kW power CW fiber laser[C]//Advanced Solid State Laser. 2013: ATh4A. 2.
    [3]
    [4]
    Gapontsev V, Fomin V, Ferin A, et al. Diffraction limited ultra-high-power fibre lasers[C]//Advanced Solid State Laser. 2010: AWA1.
    [5]
    Protz R, Zoz J, Geidek F, et al. High-power beam combining—a step to a future laser weapon system[C]//Proc of SPIE. 2012: 854708.
    [6]
    Injeyan H, Pflug G C, Vespucci M T. High power laser handbook[M]. New York: McGraw-Hill, 2011.
    [7]
    YLS series 10-100 kW datasheet[DB/OL]. http://www.ipgphotonics.com
    [8]
    Paschotta R. Field guide to optical fiber technology[M]. New York: SPIE Press, 2010.
    [9]
    Okamoto K. Fundamentals of optical waveguides[M]. New York: Academic Press, 2010.
    [10]
    廖延彪, 金慧明. 光纤光学[M]. 北京: 清华大学出版社, 1992.

    Liao Yanbiao, Jin Huiming. Fiber optics. Beijing: Tsinghua University Press, 1992
    [11]
    黄良金. 大功率光纤激光器的模式分解及模式控制[D]. 长沙: 国防科学技术大学, 2016.

    Huang Liangjin. Mode decomposition and mode control of high-power fiber lasers. Changsha: National University of Defense Technology, 2016
    [12]
    Yoda H, Polynkin P, Mansuripur M. Beam quality factor of higher order modes in a step-index fiber[J]. Journal of Lightwave Technology, 2006, 24(3): 1350-1355.
    [13]
    Siegman A E. How to (maybe) measure laser beam quality[C]//Diode Pumped Solid State Lasers: Applications and Issues. 1998: MQ1.
    [14]
    Siegman A E. Defining and measuring laser beam quality[M]//Solid State Lasers. 1993: 13-28.
    [15]
    Zhou Pu, Liu Zejin, Xu Xiaojun, et al. Numerical analysis of the effects of aberrations on coherently combined fiber laser beams[J]. Applied Optics, 2008, 47(18): 3350-3359.
    [16]
    Zhou Pu, Liu Zejin, Xu Xiaojun, et al. Beam quality factor for coherently combined fiber laser beams[J]. Optics & Laser Technology, 2009, 41(3): 268-271.
    [17]
    Yan Ping, Wang Xuejiao, Gong Mali, et al. Evaluating the beam quality of double-cladding fiber lasers in applications[J]. Applied Optics, 2016, 55(23): 6145-6150. doi: 10.1364/AO.55.006145
    [18]
    Wielandy S. Implications of higher-order mode content in large mode area fibers with good beam quality[J]. Optics Express, 2007, 15(23): 15402-15409. doi: 10.1364/OE.15.015402
    [19]
    Tao Rumao, Huang Long, Zhou Pu, et al. Propagation of high-power fiber laser with high-order-mode content[J]. Photonics Research, 2015, 3(4): 192-199.
    [20]
    冯国英, 周寿桓, 高春清. 激光模场及光束质量表征[M]. 北京: 国防工业出版社, 2016.

    Feng Guoying, Zhou Shouhuan, Gao Chunqing. Laser mode field and beam quality characterization. Beijing: National Defense Industry Press, 2016
    [21]
    Nicholson J W, Yablon A D, Ramachandran S, et al. Spatially and spectrally resolved imaging of modal content in large-mode-area fibers[J]. Optics Express, 2008, 16(10): 11.
    [22]
    胡丽荔, 冯国英, 董哲良. 基于空间和频谱分辨的光纤模式测量方法[J]. 红外与激光工程, 2015, 44(8): 2517-2522. doi: 10.3969/j.issn.1007-2276.2015.08.047

    Hu Lili, Feng Guoying, Dong Zheliang. Spatially and spectrally resolved fiber mode measurement method. Infrared and Laser Engineering, 2015, 44(8): 2517-2522 doi: 10.3969/j.issn.1007-2276.2015.08.047
    [23]
    Schimpf D N, Barankov R A, Ramachandran S. Cross-correlated (C2) imaging of fiber and waveguide modes[J]. Optics Express, 2011, 19(14): 13008-13019.
    [24]
    Demas J, Ramachandran S. Sub-second mode measurement of fibers using C2 imaging[J]. Optics Express, 2014, 22(19): 23043-23056.
    [25]
    Schmidt O A, Schulze C, Flamm D, et al. Real-time determination of laser beam quality by modal decomposition[J]. Optics Express, 2011, 19(7): 6741-6748.
    [26]
    Paurisse M, Lévèque L, Hanna M, et al. Complete measurement of fiber modal content by wavefront analysis[J]. Optics Express, 2012, 20(4): 4074-4084.
    [27]
    Brüning R, Gelszinnis P, Schulze C, et al. Comparative analysis of numerical methods for the mode analysis of laser beams[J]. Applied Optics, 2013, 52(32): 7769-7777.
    [28]
    Flamm D, Naidoo D, Schulze C, et al. Mode analysis with a spatial light modulator as a correlation filter[J]. Optics Letters, 2012, 37(13): 2478-2480.
    [29]
    Lü Haibin, Zhou Pu, Wang Xiaolin, et al. Fast and accurate modal decomposition of multimode fiber based on stochastic parallel gradient descent algorithm[J]. Applied Optics, 2013, 52(12): 2905-2908.
    [30]
    Huang Liangjin, Guo Shaofeng, Leng Jinyong, et al. Real-time mode decomposition for few-mode fiber based on numerical method[J]. Optics Express, 2015, 23(4): 4620-4629.
    [31]
    Huang Liangjin, Lü Haibin, Zhou Pu, et al. Modal analysis of fiber laser beam by using stochastic parallel gradient descent algorithm[J]. Photonics Technology Letters, 2015, 27(21): 2280-2283.
    [32]
    Andermahr N, Theeg T, Fallnich C. Novel approach for polarization-sensitive measurements of transverse modes in few-mode optical fibers[J]. Applied Physics B, 2008, 91(2): 353-357.
    [33]
    Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224.
    [34]
    Smith A V, Smith J J. Mode instability in high power fiber amplifiers[J]. Optics Express, 2011, 19(11): 10180-10192.
    [35]
    Hansen K R, Alkeskjold T T, Broeng J, et al. Thermally induced mode coupling in rare-earth doped fiber amplifiers[J]. Optics Letter, 2012, 37(12): 2382-2384.
    [36]
    Jauregui C, Eidam T, Otto H-J, et al. Physical origin of mode instabilities in high-power fiber laser systems[J]. Optics Express, 2012, 20(12): 12912-12925.
    [37]
    Dong Liang. Stimulated thermal Rayleigh scattering in optical fibers[J]. Optics Express, 2013, 21(3): 2642-2656.
    [38]
    Hu I-Ning, Zhu Cheng, Zhang Chao, et al. Analytical time-dependent theory of thermally-induced modal instabilities in high power fiber amplifiers[C]//Proc of SPIE. 2013: 860109.
    [39]
    Zervas M N. High power ytterbium-doped fiber lasers—fundamentals and applications[J]. Int J Mod Phys B, 2014, 28(12): 1442009.
    [40]
    Russell P S t J, Culverhouse D, Farahi F. Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers[J]. IEEE J Quantum Electron, 1991, 27(3): 836-842.
    [41]
    Russell P St J, Culverhouse D, Farahi F. Experimental observation of FSBS in dual-mode single-core fibre[J]. Electron Lett, 1990, 26(15): 1195-1196.
    [42]
    Kuznetsov M, Vershinin O, Tyrtyshnyy V, et al. Low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers[J]. Opt Express, 2014, 22(24): 29714-29725.
    [43]
    陶汝茂. 高功率窄线宽近衍射极限光纤激光放大器热致模式不稳定研究[D]. 长沙: 国防科学技术大学研究生院, 2015.

    Tao Rumao. Study of thermal-induced modal instabilities in high power narrow-linewidth fiber amplifiers with near diffraction-limited beam quality. Changsha: National University of Defense Technology, 2015
    [44]
    陶汝茂, 周朴, 肖虎, 等. 高功率光纤激光中模式不稳定性现象研究进展[J]. 激光与光电子学进展, 2014, 51(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201402001.htm

    Tao Rumao, Zhou Pu, Xiao Hu, et al. Progress of study on mode instability in high power fiber amplifiers. Laser & Optoelectronics Progress, 2014, 51(2): 1-8 https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201402001.htm
    [45]
    Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. 1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities[J]. Photonics Research, 2015, 3(3): 86-93.
    [46]
    Jansen F, Stutzki F, Otto H J, et al. Thermally induced waveguide changes in active fibers[J]. Optics Express, 2012, 20(4): 3997-4008.
    [47]
    Smith A V, Smith J J. Increasing mode instability thresholds of fiber amplifiers by gain saturation[J]. Optics Express, 2013, 21(13): 15168-15182
    [48]
    Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers[J]. Laser Physics Letter, 2015, 12: 085101.
    [49]
    Beier F, Hupel C, Nold J, et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium doped low NA fiber amplifier[J]. Optics Express, 2016, 24(6): 6011-6020.
    [50]
    Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. Study of dopant concentrations on thermally induced mode instability in high-power fiber amplifiers[J]. Laser Physics, 2016, 26: 065103.
    [51]
    陶汝茂, 王小林, 肖虎, 等. 高功率光纤放大器中模式不稳定阈值功率的理论研究[J]. 光学学报, 2014, 34: 114002. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201401021.htm

    Tao Rumao, Wang Xiaolin, Xiao Hu, et al. Theoretical study of the threshold power of mode instability in high-power fiber amplifiers. Acta Optica Sinica, 2014, 34: 114002 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201401021.htm
    [52]
    Eidam T, Hädrich S, Jansen F, et al. Preferential gain photonic-crystal fiber for mode stabilization at high average powers[J]. Optics Express, 2011, 19(9): 8656-8661.
    [53]
    Engin D, Lu W, Verdun H, et al. High power modal instability measurements of very large mode area (VLMA) step index fibers[C]//Proc of SPIE. 2013: 87330J.
    [54]
    Naderi S, Dajani I, Madden T, et al. Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations[J]. Optics Express, 2013, 21(13): 16111-16129.
    [55]
    Smith A V, Smith J J. Mode instability thresholds of fiber amplifiers[C]//Proc of SPIE. 2013: 860108.
    [56]
    Laurila M, Jørgensen M M, Hansen K R, et al. Distributed mode filtering rod fiber amplifier delivering 292 W with improved mode stability[J]. Optics Express, 2012, 20(5): 5742-5753.
    [57]
    Johansen M M, Laurila M, Maack M D, et al. Frequency resolved transverse mode instability in rod fiber amplifiers[J]. Optics Express, 2013, 21(19): 21847-21856.
    [58]
    Otto H-J, Modsching N, Jauregui C, et al. Impact of photo darkening on the mode instability threshold[J]. Optics Express, 2015, 23(12): 15265-15277.
    [59]
    Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. Comparison of the threshold of thermal-induced mode instabilities in polarization-maintaining and non-polarization-maintaining active fibers[J]. Journal of Optics, 2016, 18: 065501.
    [60]
    Goodno G D, McNaught S, Thielen P, et al. Polarization control with mode stability: US8922877B1[P]. 2014-12-30.
    [61]
    Smith A V, Smith J J. Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers[J]. Optics Express, 2012, 20(22): 24545-24558.
    [62]
    Hansen K R, Alkeskjold T T, Broeng J, et al. Theoretical analysis of mode instability in high-power fiber amplifiers[J]. Optics Express, 2013, 21(2): 1944-1971.
    [63]
    Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nat Photon, 2012, 7: 861-867.
    [64]
    Ballato J, Dragic P. Materials development for next generation optical fiber[J]. Materials, 2014, 7(6): 4411-4430.
    [65]
    Shaw L B, Askins C, Kim W, et al. Cladding pumped single crystal Yb: YAG fiber amplifier[C]//Advanced Solid State Laser, 2015: AM4A. 4.
    [66]
    Tao Rumao, Wang Xiaolin, Zhou Pu, et al. Seed power dependence of mode instabilities in high power fiber amplifiers[J]. Journal of Optics, 2017, 19: 065202.
    [67]
    Otto H-J, Jauregui C, Stutzki F, et al. Dependence of mode instabilities on the extracted power of fiber laser systems[C]//Advanced Solid State Laser, 2013: ATu3A. 02.
    [68]
    Haarlammert N, Sattler B, Liem A, et al. Optimizing mode instability in low-NA fibers by passive strategies[J]. Optics Letter, 2015, 40(10): 2317-2320.
    [69]
    Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. Study of wavelength dependence of mode instability based on a semi-analytical model[J]. IEEE Journal of Quantum Electronics, 2015, 51(8): 1-6.
    [70]
    Otto H-J, Modsching N, Jauregui C, et al. Wavelength dependence of maximal diffraction-limited output power of fiber lasers[C]//Proc of SPIE. 2015: 93441Y.
    [71]
    Brar K, Leuchs M S, Henric J, et al. Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers[C]//Proc of SPIE. 2014: 89611R.
    [72]
    Yagodkin R, Platonov N, Yusim A, et al. >1.5 kW narrow linewidth CW diffraction-limited fiber amplifier with 40nm bandwidth[C]//Proc of SPIE. 2015: 972807.
    [73]
    Smith A V, Smith J J. Steady-periodic method for modeling mode instability in fiber amplifiers[J]. Optics Express, 2013, 21(3): 2606-2623.
    [74]
    Smith J J, Smith A V. Influence of signal bandwidth on mode instability thresholds of fiber amplifiers[C]//Proc of SPIE. 2015: 93440L.
    [75]
    Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength[J]. Journal of Optics, 2015, 17: 045504.
    [76]
    Tao R, Ma P, Wang X, et al. Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers[J]. Laser Phys Lett, 2017, 14: 025002.
    [77]
    Yu C X, Shatrovoy O, Fan T Y. All-glass fiber amplifier pumped by ultra-high brightness pumps[C]//Proc of SPIE. 2015: 972806.
    [78]
    Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. 1.4 kW all-fiber narrow-linewidth polarization-maintained fiber amplifier[C]//Proc of SPIE. 2014: 92550B.
    [79]
    Lei Min, Qi Yunfeng, Liu Chi, et al. Mode controlling study on narrow-linewidth and high power all-fiber amplifier[C]//Proc of SPIE. 2015: 95431L.
    [80]
    雷敏, 漆云凤, 刘驰, 等. 高功率全光纤放大器的高阶模激发阈值特性研究[J]. 中国激光, 2015, 42: 0605002. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201506023.htm

    Lei Min, Qi Yunfeng, Liu Chi, et al. High-order modes threshold study on high power all-fiber amplifier. Chinese Journal of Lasers, 2015, 42: 0605002 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201506023.htm
    [81]
    Ma Pengfei, Tao Rumao, Su Rongtao, et al. 1.89 kW all-fiberized and polarization-maintained fiber amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 2016, 24(4): 4187-4195.
    [82]
    陶汝茂, 周朴, 王小林, 等. 高功率全光纤结构主振荡功率放大器中模式不稳定现象的实验研究[J]. 物理学报, 2014, 63: 085202. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201408036.htm

    Tao Rumao, Zhou Pu, Wang Xiaolin, et al. Experimental study on mode instability in high power all-fiber master oscillator power amplifier fiber lasers. Acta Physica Sinica, 2014, 63: 085202 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201408036.htm
    [83]
    Tao Rumao, Su Rongtao, Ma Pengfei, et al. Suppressing mode instabilities by optimizing the fiber coiling methods[J]. Laser Physics Letter, 2017, 14: 025101.
    [84]
    Robin C, Dajani I, Zeringue C, et al. Gain-tailored SBS suppressing photonic crystal fibers for high power applications[C]//Proc of SPIE. 2012: 82371D.
    [85]
    Liu C H, Chang G, Litchinitser N, et al. Chirally coupled core fibers at 1550-nm and 1064-nm for effectively single-mode core size scaling[C]//Proc CLEO/QELS 2007. CTuBB3.
    [86]
    Kanskar M, Zhang J, McComb T S, et al. Traverse-modal-instability (TMI)-free Yb-doped 35 μm core and 250 μm clad chirally coupled core (3C) fiber MOPA with 475 W output power[C]//Laser Technology for Defense and Security XⅡ. 2016.
    [87]
    Dong L, Saitoh K, Kong F, et al. All-solid photonic bandgap fibers for high power lasers[C]//Proc of SPIE. 2012: 85470J, .
    [88]
    Kong F, Gu G, Hawkins T, et al. ~1 kilowatt ytterbium-doped all-solid photonic bandgap fiber laser[C]//Proc of SPIE. 2017: 1008311.
    [89]
    Filippov V, Ustimchik V, Chamorovskii Yu, et al. Impact of axial profile of the gain medium on the mode instability in lasers: regular versus tapered fibers[C]//European Conference on Laser and Electro-Optics and the European Quantum Electronics Conference. 2015.
    [90]
    Eznaveh Z S, Lopez-Galmiche G, Antonio-Lopez E, et al. Bi-directional pump configuration for increasing thermal modal instabilities threshold in high power fiber amplifiers[C]//Proc of SPIE. 2015: 93442G.
    [91]
    Stihler C, Jauregui C, Otto H J, et al. Controlling mode instabilities at 628 W average output power in an Yb-doped rod-type fiber amplifier by active modulation of the pump power[C]//Proc of SPIE. 2017: 100830P.
    [92]
    Liu Wei, Ma Pengfei, Lü Haibin, et al. General analysis of SRS-limited high-power fiber lasers and design strategy[J]. Optics Express, 2016, 24(23): 26715-26721.
    [93]
    Xiao Hu, Zhou Pu, Wang Xiaolin, et al. Experimental investigation on 1018-nm high-power ytterbium-doped fiber amplifier[J]. IEEE Photonics Technology Letters, 2012, 24(13): 1088-1090.
    [94]
    Xiao Hu, Zhou Pu, Wang Xiaolin, et al. High power 1018 nm monolithic Yb3+-doped fiber laser and amplifier[J]. Laser Physics Letters, 2012, 9(10): 748.
    [95]
    Huang Y, Edgecumbe J, Ding J, et al. Performance of kW class fiber amplifiers spanning a broad range of wavelengths: 1028~1100 nm[C]//Proc of SPIE. 2014: 89612K.
    [96]
    于海龙, 王小林, 张汉伟, 等. 300 W线偏振飞秒全光纤啁啾脉冲放大系[J]. 强激光与粒子束, 2016, 28: 050101. doi: 10.11884/HPLPB201628.050101

    Yu Hailong, Wang Xiaolin, Zhang Hanwei, et al. 300 W linearly polarized femtosecond all-fiber chirped pulse amplification system. High Power Laser and Particle Beams, 2016, 28: 050101 doi: 10.11884/HPLPB201628.050101
    [97]
    Bobkov K K, Bubnov M M, Aleshkina S S, et al. Long-term mode shape degradation in large mode area Yb-doped pulsed fiber amplifiers[J]. Laser Physics Letter, 2017, 14: 015102.
    [98]
    Ward B, Theory and modeling of photodarkeninginduced quasi static degradation in fiber amplifiers[J]. Optics Express, 2016, 24(4): 3488-3501.
    [99]
    史尘, 陶汝茂, 王小林, 等. 光纤激光模式不稳定的新现象与新进展[J]. 中国激光, 2017, 44: 0201004. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201702005.htm

    Shi Chen, Tao Rumao, Wang Xiaolin, et al. New progress and phenomena of modal instability in fiber lasers. Chinese Journal of Lasers, 2017, 44: 0201004 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201702005.htm
    [100]
    Alvarez-Chavez J A, Grudinin A B, Nilsson J, et al. Mode selection in high power cladding pumped fibre lasers with tapered section[C]//Conference on Lasers and Electro-Optics. 1999: 247-248.
    [101]
    Li Libo, Lou Qihong, Zhou Jun, et al. High power single transverse mode operation of a tapered large-mode-area fiber laser[J]. Optics Communications, 2008, 281(4): 655-657.
    [102]
    张汉伟, 周朴, 王小林, 等. 双包层光纤光学放电现象的建模仿真分析[J]. 光学学报, 2013, 33: 706015. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201307018.htm

    Zhang Hanwei, Zhou Pu, Wang Xiaolin, et al. Simulation of fiber optical discharge effect of double cladding fiber. Acta Optica Sinica, 2013, 33: 0706015 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201307018.htm
    [103]
    Zhang Hanwei, Zhou Pu, Wang Xiaolin, et al. Fiber fuse effect in high-power double-clad fiber laser[C]//Conference on Lasers and Electro-Optics. 2013: WPD_4.
    [104]
    史尘, 王小林, 粟荣涛, 等. 长拉锥双包层光纤在光纤激光领域的应用研究进展[J]. 激光与光电子学进展, 2015, 52(12): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201512001.htm

    Shi Chen, Wang Xiaolin, Su Rongtao, et al. Progress of study on long tapered double-clad fiber in fiber laser application. Laser & Optoelectronics Progress, 2015, 52(12): 1-8 https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201512001.htm
    [105]
    Koplow J P, Kliner D A V, Goldberg L. Single-mode operation of a coiled multimode fiber amplifier[J]. Optics Letters, 2000, 25(7): 442-444.
    [106]
    Schermer R T, Cole J H. Improved bend loss formula verified for optical fiber by simulation and experiment[J]. IEEE Journal of Quantum Electronics, 2007, 43(10): 11.
    [107]
    Marcuse D. Influence of curvature on the losses of doubly clad fibers[J]. Applied Optics, 1982, 21(23): 4208-4213.
    [108]
    Li Mingjun, Chen Xin, Liu Anping, et al. Limit of effective area for single-mode operation in step-index large mode area laser fibers[J]. Journal of Lightwave Technology, 2009, 27(15): 3010-3016.
    [109]
    Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 2004, 12(25): 6088-6092.
    [110]
    Huang Liangjin, Wang Wenliang, Leng Jinyong, et al. Experimental investigation on evolution of the beam quality in a 2-kW high power fiber amplifier[J]. IEEE Photonics Technology Letters, 2014, 26(1): 33-36.
    [111]
    Xu Jiangming, Liu Wei, Leng Jinyong, et al. Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW[J]. Optics Letters, 2015, 40(13): 2973-2976.
    [112]
    Walorny M, Abramczyk J, Jacobson N, et al. Mechanical reliability of double clad fibers in typical fiber laser deploy[C]//Proc of SPIE. 2016: 97283A.
    [113]
    Petit V, Tumminelli R P, Minelly J D, et al. Extremely low NA Yb doped preforms (< 0.03) fabricated by MCVD[C]//Proc of SPIE. 2016: 97282R.
    [114]
    Kuhn S, Hein S, Hupel C, et al. Towards monolithic single-mode Yb-doped fiber amplifiers with > 4 kW average power[C]//Advanced Solid State Laser. 2016: ATu4A. 2.
    [115]
    Jain D, Jung Y, Barua P S, et al. Demonstration of ultra-low Na rare-earth doped step index fiber for applications in high power fiber lasers[J]. Optics Express, 2015, 23(6): 7407-7415.
    [116]
    Xu Wenbin, Lin Zhiquan, Wang Meng, et al. 50 μm core diameter Yb3+/Al3+/F- codoped silica fiber with M2 < 1.1 beam quality[J]. Optics Letters, 2016, 41(3): 504-507.
    [117]
    Hupel C, Kuhn S, Hein S, et al. MCVD based fabrication of low-NA fibers for high power fiber laser application[C]//Advanced Solid State Laser. 2015: AM4A. 2.
    [118]
    Beier F, Hupel C, Kuhn S, et al. Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier[J]. Opt Express, 2017, 25: 14892-14899.
    [119]
    Jain D, Jung Y, Nunez-Velazquez M, et al. Extending single mode performance of all-solid large-mode-area single trench fiber[J]. Optics Express, 2014, 22(25): 31078-31091.
    [120]
    Jain D, Alam S, Codemard C, et al. High power, compact, picosecond MOPA based on single trench fiber with single polarized diffraction-limited output[J]. Optics Letters, 2015, 40(17): 4150-4153.
    [121]
    Söderlund M J, Ponsoda M J J, Tammela S K T, et al. Mode-induced transverse photodarkening loss variations in large-mode-area ytterbium doped silica fibers[J]. Opt Express, 2008, 16(14): 10633-10640.
    [122]
    Marciante J R. Gain filtering for single-spatial-mode operation of large-mode-area fiber amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 30-36.
    [123]
    Marciante J R, Roides R G, Shkunov V V, et al. Near-diffraction-limited operation of step-index large-mode-area fiber lasers via gain filtering[J]. Optics Letters, 2010, 35(11): 1828-1830.
    [124]
    Ye C, Koponen J, Kokki T, et al. Confined-doped ytterbium fibers for beam quality improvement: fabrication and performance[C]//SPIE LASE. 2012: 823737.
    [125]
    Fini J M. Bend distortion in large-mode-area amplifier fiber design[C]//Proc of SPIE. 2007: 67810E.
    [126]
    Ma Xiuquan, Liu Chi-Hung, Chang Guoqing, et al. Angular-momentum coupled optical waves in chirally-coupled-core fibers[J]. Optics Express, 2011, 19(27): 26515-26528.
    [127]
    Ma Xiuquan, Zhu Cheng, Hu I-Ning, et al. Single-mode chirally-coupled-core fibers with larger than 50μm diameter cores[J]. Optics Express, 2014, 22(8): 9206-9219.
    [128]
    Dong L, McKay H A, Marcinkevicius A, et al. Extending effective area of fundamental mode in optical fibers[J]. Journal of Lightwave Technology, 2009, 27(11): 1565-1570.
    [129]
    Dong Liang, Peng Xiang, Li Jun. Leakage channel optical fibers with large effective area[J]. Journal of the Optical Society of America B, 2007, 24(8): 1689-1697.
    [130]
    Wong W S, Peng X, McLaughlin J M, et al. Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers[J]. Optics Letters, 2005, 30(21): 2855-2857.
    [131]
    Dong L, McKay H A, Fu L, et al. Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding[J]. Optics Express, 2009, 17(11): 8962-8969.
    [132]
    Limpert J, Stutzki F, Jansen F, et al. Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation[J]. Light: Science & Applications, 2012, 1: e8.
    [133]
    Stutzki F, Jansen F, Otto H-J, et al. Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems[J]. Optica, 2014, 1(4): 233-242.
    [134]
    Jain D, Baskiotis C, May-Smith T C, et al. Large mode area multi-trench fiber with delocalization of higher order modes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 242-250.
    [135]
    Jain D, Jung Y, Kim J, et al. Robust Single-mode all-solid multi-trench fiber with large effective mode area[J]. Optics Letters, 2014, 39(17): 5200-5203.
    [136]
    Fridman M, Machavariani G, Davidson N, et al. Fiber lasers generating radially and azimuthally polarized light[J]. Applied Physics Letters, 2008, 93: 191104.
    [137]
    Zou Lin, Yao Yao, Li Jianlang. High-power, efficient and azimuthally polarized ytterbium-doped fiber laser[J]. Optics Letters, 2015, 40(2): 229-232.
    [138]
    Lin D, Daniel J M, Gecevičius M, et al. Cladding-pumped ytterbium-doped fiber laser with radially polarized output[J]. Optics Letters, 2014, 39(18): 5359-5361.
    [139]
    Lin D, Clarkson W A. Polarization-dependent transverse mode selection in an Yb-doped fiber laser[J]. Optics Letters, 2015, 40(4): 498-501.
    [140]
    Liu Tong, Chen Shengping, Qi Xue, et al. High-power transverse-mode-switchable all-fiber picosecond MOPA[J]. Optics Express, 2016, 24(24): 27821-27827.
    [141]
    Tanaka Y, Okida M, Miyamoto K, et al. High power picosecond vortex laser based on a large-mode-area fiber amplifier[J]. Optics Express, 2009, 17(16): 14362-14366.
    [142]
    Koyama M, Hirose T, Okida M, et al. Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier[J]. Optics Express, 2011, 19(2): 994-999.
    [143]
    Kanazawa S, Kozawa Y, Sato S. High-power and highly efficient amplification of a radially polarized beam using an Yb-doped double-clad fiber[J]. Optics Letters, 2014, 39(10): 2857-2859.
    [144]
    Kim D J, Kim J W, Clarkson W A. High-power master-oscillator power-amplifier with optical vortex output[J]. Applied Physics B, 2014, 117(1): 459-464.
    [145]
    Ngcobo S, Litvin I, Burger L, et al. A digital laser for on-demand laser modes[J]. Nat Commun, 2013, 4: 2289.
    [146]
    Huang Liangjin, Leng Jinyong, Zhou Pu, et al. Adaptive mode control of a few-mode fiber by real-time mode decomposition[J]. Optics Express, 2015, 23(21): 28082-28090.
    [147]
    Tian Chenghui, Yu Song, Cai Shanyong, et al. Fiber laser for on-demand mode generation in 1550 nm band[J]. Photonics Research, 2017, 5(3) : 256.
    [148]
    Zhou Xuanfeng, Chen Zilun, Wang Zefeng, et al. Monolithic fiber end cap collimator for high power free-space fiber-fiber coupling[J]. Applied Optics, 2016, 55(15): 4001-4003.
    [149]
    Zhi Dong, Ma Yanxing, Chen Zilun, et al. Large deflection angle, high-power adaptive fiber optics collimator with preserved near-diffraction-limited beam quality[J]. Optics Letters, 2016, 41(10): 2217-2220.
    [150]
    Tao Rumao, Si Lei, Ma Yanxing, et al. Optical quality of high-power fiber laser beams propagating through collimating systems[J]. Acta Physica Sinica, 2011, 60: 104208.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article views (1908) PDF downloads(838) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return