Wang Ganping, Li Chunxia, Jin Xiao, et al. Multi-beam diode based on combined magnetic system[J]. High Power Laser and Particle Beams, 2020, 32: 053003. doi: 10.11884/HPLPB202032.190436
Citation: Li Jingyuan, Fang Liyong, Hu Dongcai, et al. A recognition and correction method of declining BGA X-ray image based on transformation matrix[J]. High Power Laser and Particle Beams, 2018, 30: 109001. doi: 10.11884/HPLPB201830.180092

A recognition and correction method of declining BGA X-ray image based on transformation matrix

doi: 10.11884/HPLPB201830.180092
  • Received Date: 2018-03-30
  • Rev Recd Date: 2018-06-18
  • Publish Date: 2018-10-15
  • During the quality inspection of BGA solder balls based on X-ray images, existing image processing algorithm can not effectively deal with the images of unexpectedly inclined PCB. A method which could automatically judge the inclination of X-ray images of BGA solder balls and correct them was proposed. The feature of BGA solder balls array was used in the method to rebuild the structural information firstly. Then the transformation matrix between ideal front view image and real inclined image would be calculated by Moore-Penrose generalized inverse matrix. Finally, the inverse matrix of transformation matrix was used to get the ideal front view image. At the same time, the angle of PCB could be estimated by using the transformation matrix. When used in the inclined X-ray images of BGA solder balls, the method could judge the inclination effectively and correct it to get the front view image. The method can be used as an image quality evaluation algorithm to judge whether the image is a desired image in industrial detection, as well as be used as an automatic image correction algorithm to improve the adaptability of the automatic detection system based on X-ray.
  • [1]
    Mearig J, Goers B. An overview of manufacturing BGA technology[C]//17th IEEE International Electronics Manufacturing Technology Symposium. 1995: 434-437.
    [2]
    Lall P, Wei J. X-ray micro-CT and digital-volume correlation based three-dimensional measurements of deformation and strain in operational electronics[J]. 2015, 2015: 406-416.
    [3]
    Said A F, Bennett B L, Karam L J, et al. Automated void detection in solder balls in the presence of vias and other artifacts[J]. IEEE Transactions on Components Packaging & Manufacturing Technology, 2012, 2(11): 1890-1901. https://www.infona.pl/resource/bwmeta1.element.ieee-art-000006317150
    [4]
    Nuanprasert S, Baba S, Suzuki T. An efficient method of occluded solder ball segmentation for automated BGA void defect inspection using X-ray images[C]//Conference of the IEEE Industrial Electronics Society. 2016: 003308-003313.
    [5]
    Peng S H, Nam H D. BGA void detection in X-ray images based on a new blob detector[C]//2011 4th international congress on image and signal processing. 2011: 1847-1850.
    [6]
    欧阳兆煊. X射线图像几何畸变校正[D]. 广州: 华南理工大学, 2010.

    Ouyang Zhaoxuan. Geometry correction for X-ray image. Guangzhou: South China University of Technology, 2010
    [7]
    Yuan Zehui, Li Shizhong. X-ray image distortion correction based on SVR[J]. Journal of Measurement Science and Sinstrumentation, 2015(3): 302-306.
    [8]
    鲜飞. PCB组装领域中的X-射线检测技术[J]. 印制电路信息, 2010(11): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-YZDL201011016.htm

    Xian Fei. X-ray inspection in PCB assembly field. Printed Circuit Information, 2010(11): 66-70 https://www.cnki.com.cn/Article/CJFDTOTAL-YZDL201011016.htm
    [9]
    Yang M, Zhang J, Yuan M, et al. Calibration method of projection coordinate system for X-ray cone-beam laminography scanning system[J]. Ndt & E International, 2012, 52(4): 16-22. https://www.sciencedirect.com/science/article/pii/S0963869512001065
    [10]
    Duda R O, Hart P E. Use of the Hough transformation to detect lines and curves in pictures[J]. Communications of the Acm, 1972, 15(1): 11-15. doi: 10.1145/361237.361242
  • Relative Articles

    [1]Cui Meng, Wan Zhizhi, Zuo Xianghua, Liu Jing, Dong Chenglong. X-band multi-beam klystron for compact accelerators[J]. High Power Laser and Particle Beams, 2020, 32(10): 103015. doi: 10.11884/HPLPB202032.200226
    [2]Zuo Xianghua, Wan Zhizhi, Cui Meng, Liu Jing, Dong Chenglong. C-band high-power multi-beam klystron with reverse permanent magnet[J]. High Power Laser and Particle Beams, 2020, 32(10): 103011. doi: 10.11884/HPLPB202032.200225
    [3]Li Ye, Li Dongfeng, Wang Ziwei, Yan Song. Development of S-band ultra wideband high average power multi-beam klystron[J]. High Power Laser and Particle Beams, 2020, 32(10): 103005. doi: 10.11884/HPLPB202032.200202
    [4]Wang Ganping, Jin Xiao, Li Chunxia, Huang Hua, Liu Zhenbang, Li Lele. Development progress of relativistic multi-beam[J]. High Power Laser and Particle Beams, 2018, 30(2): 023002. doi: 10.11884/HPLPB201830.170279
    [5]Yuan Huan, Liu Zhenbang, Huang Hua, Meng Fanbao, Chen Changhua. Phase characteristics of X-band multiple beams relativistic klystron driven by intense pulse electron beams[J]. High Power Laser and Particle Beams, 2017, 29(09): 093005. doi: 10.11884/HPLPB201729.170131
    [6]Li Lele, Huang Hua, Liu Zhenbang, Wang Ganping, Yuan Huan. PIC simulation of high efficient injection of intense relative multi-beam[J]. High Power Laser and Particle Beams, 2016, 28(12): 123003. doi: 10.11884/HPLPB201628.160434
    [7]Zeng Han, Xiong Yongqian. Calculation of transmission efficiency and orbit correction in transfer line of THz-FEL device[J]. High Power Laser and Particle Beams, 2015, 27(07): 073102. doi: 10.11884/HPLPB201527.073102
    [8]wang wei, chen jing, yu deyang, wu yehong, zhang mingwu, cai xiaohong. Guiding effect on strong beam electrons in tapered SiO2 capillary[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- .
    [9]zeng zhengzhong. Approximate series solutions of pulse waveforms and transmission efficiencies of exponential transmission line[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [10]wang yong, ruan wang, zhang rui, xie jingxin, ding yaogen, liu pukun. Design and simulation of high power L-band multi-beam klystron[J]. High Power Laser and Particle Beams, 2009, 21(04): 0- .
    [11]gao zhonggui, lin fumin. Cylindrical coaxial T TM812 mode cavity resonator for millimeter wave multi-beam klystron[J]. High Power Laser and Particle Beams, 2009, 21(08): 0- .
    [12]chen ding-yang, xu ze-ping, qin yi, ning jia-min. Transmission efficiency of high power density soft X-ray through capillary[J]. High Power Laser and Particle Beams, 2008, 20(04): 0- .
    [13]yang guo-jun, zhang zhuo, he xiao-zhong. Beam dynamics design of a 750 keV radio frequency quadrupole injector[J]. High Power Laser and Particle Beams, 2007, 19(09): 0- .
    [14]lin fu-min, ding yao-gen. Research on an MBK output circuit of π-mode double gap cavity loaded by cutoff waveguide filter[J]. High Power Laser and Particle Beams, 2006, 18(12): 0- .
    [15]zhang rui, wang yong. Electro-optical system in high peak power multi-beam klystron[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- .
    [16]wang shu-zhong, ding yao-gen, shen bin, wang jin-hua, . Electron optics system of multi-beam klystron[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [17]yang yu-lin, zhang zhi-chou, ding wu. Three-dimensional analysis of multiple beam klystron[J]. High Power Laser and Particle Beams, 2005, 17(08): 0- .
    [18]wang yong, ding yao-gen, liu pu-kun, xie jing-xin, zhang rui. Preliminary research of high peak power multi-beam klystron[J]. High Power Laser and Particle Beams, 2005, 17(08): 0- .
    [19]wang hai-yang, li ming-guang, li jia-yin. Analysis and simulation for double reentrant cavity of multiple-beam klystron[J]. High Power Laser and Particle Beams, 2002, 14(03): 0- .
    [20]cheng yong-dong, li jia-yin. Study on microwave self-adapting equalizer for amplifier of multiple-beam klystron[J]. High Power Laser and Particle Beams, 2002, 14(01): 0- .
  • Cited by

    Periodical cited type(9)

    1. 刘必成,易茜,宗春光,许艳伟,李亮. 基于梯度特征聚类分析的大尺寸物体CT图像环状伪影校正方法. CT理论与应用研究. 2024(06): 781-789 .
    2. Ou?Yi Li,Yang Wang,Qiong Zhang,Yong?Hui Li. Parallel computing approach for efficient 3?D X?ray?simulated image reconstruction. Nuclear Science and Techniques. 2023(07): 26-40 .
    3. 董建,毕丹阳,杨耿煌,秦转萍. 探测器故障下医用CT图像重建的容错算法开发. 天津职业技术师范大学学报. 2020(01): 7-12+25 .
    4. 迟大钊,马子奇,程怡,赵梓博,唐自衡. 3D打印镂空结构缺陷X射线CT检测. 焊接学报. 2018(11): 22-26+130 .
    5. 齐子诚,倪培君,李红伟,唐盛明,郭智敏. 基于多元统计的线阵CT图像环形伪影去除方法. 无损检测. 2017(12): 20-24+39 .
    6. 侯慧玲. 细节保持的锥束CT环形伪影校正(英文). Journal of Measurement Science and Instrumentation. 2016(02): 165-170 .
    7. 周意超,谢明元,杨玲,刘福祥. CT环状伪影矫正方法的改进研究. 四川大学学报(医学版). 2016(03): 420-424 .
    8. 邹永宁,杨瑞娜,罗骁,王珏. 石油岩芯CT图像裂缝分割算法研究. 强激光与粒子束. 2016(05): 167-172 . 本站查看
    9. 张磊. CT影像伪影产生原因及消除方法探讨. 中国卫生产业. 2016(28): 196-198 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.0 %FULLTEXT: 21.0 %META: 76.7 %META: 76.7 %PDF: 2.3 %PDF: 2.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.4 %其他: 3.4 %其他: 0.1 %其他: 0.1 %China: 0.6 %China: 0.6 %India: 0.1 %India: 0.1 %Kao-sung: 0.1 %Kao-sung: 0.1 %上海: 0.9 %上海: 0.9 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %保定: 0.1 %保定: 0.1 %内江: 0.1 %内江: 0.1 %北京: 24.1 %北京: 24.1 %十堰: 0.1 %十堰: 0.1 %南京: 0.3 %南京: 0.3 %厦门: 0.1 %厦门: 0.1 %台州: 0.5 %台州: 0.5 %合肥: 0.1 %合肥: 0.1 %吉林: 0.1 %吉林: 0.1 %周口: 0.1 %周口: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %太原: 0.1 %太原: 0.1 %安康: 0.1 %安康: 0.1 %宣城: 0.1 %宣城: 0.1 %巴音郭楞: 0.1 %巴音郭楞: 0.1 %常州: 0.1 %常州: 0.1 %广州: 0.1 %广州: 0.1 %张家口: 0.5 %张家口: 0.5 %成都: 0.2 %成都: 0.2 %扬州: 0.1 %扬州: 0.1 %新乡: 0.3 %新乡: 0.3 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 2.0 %杭州: 2.0 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 0.1 %深圳: 0.1 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 0.4 %湖州: 0.4 %漯河: 0.1 %漯河: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.3 %绵阳: 0.3 %芒廷维尤: 13.5 %芒廷维尤: 13.5 %芝加哥: 0.1 %芝加哥: 0.1 %衡水: 0.1 %衡水: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 46.0 %西宁: 46.0 %西安: 0.7 %西安: 0.7 %贵阳: 0.2 %贵阳: 0.2 %赣州: 0.1 %赣州: 0.1 %达州: 0.1 %达州: 0.1 %运城: 1.3 %运城: 1.3 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.5 %郑州: 0.5 %酒泉: 0.1 %酒泉: 0.1 %重庆: 0.2 %重庆: 0.2 %长沙: 0.3 %长沙: 0.3 %长治: 0.1 %长治: 0.1 %阿布奎基: 0.2 %阿布奎基: 0.2 %青岛: 0.1 %青岛: 0.1 %黄冈: 0.1 %黄冈: 0.1 %其他其他ChinaIndiaKao-sung上海中山临汾丹东丽水保定内江北京十堰南京厦门台州合肥吉林周口嘉兴太原安康宣城巴音郭楞常州广州张家口成都扬州新乡晋城普洱杭州武汉沈阳济南深圳温州渭南湖州漯河石家庄福州秦皇岛绵阳芒廷维尤芝加哥衡水衢州西宁西安贵阳赣州达州运城邯郸郑州酒泉重庆长沙长治阿布奎基青岛黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views (1146) PDF downloads(96) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return