Volume 30 Issue 10
Oct.  2018
Turn off MathJax
Article Contents
Wang Chao, Kang Yifan, Bai Yonglin, et al. Effect of target position on phase matching in high-order harmonic generation[J]. High Power Laser and Particle Beams, 2018, 30: 101001. doi: 10.11884/HPLPB201830.180096
Citation: Wang Chao, Kang Yifan, Bai Yonglin, et al. Effect of target position on phase matching in high-order harmonic generation[J]. High Power Laser and Particle Beams, 2018, 30: 101001. doi: 10.11884/HPLPB201830.180096

Effect of target position on phase matching in high-order harmonic generation

doi: 10.11884/HPLPB201830.180096
  • Received Date: 2018-04-03
  • Rev Recd Date: 2018-05-04
  • Publish Date: 2018-10-15
  • This paper presents an experimental method to realize the best high-order harmonic generation(HHG) phase matching in the interaction of strong optical field and gas target. By studying the effects of the relative location between gas target source and Gaussian-type driving field focus on the harmonic phase matching, conclusions are obtained that the optimum position of gas target for phase matching is always 3-5 mm behind the focal point of the driving field, with much lower HHG yield before the focus caused by serious harmonic phase mismatch. At the same time, in the optimum relative position, the driving field and the high-order harmonic field have similar spatial distribution characteristics, providing the experimental basis for the commonly used assumptions of Gaussian beam for high-order harmonic field.
  • loading
  • [1]
    周洪军, 钟鹏飞, 郑津津, 等. 不同厚度Al滤片对17~33 nm高次谐波抑制的定量研究[J]. 光学 精密工程, 2007, 15(7): 1016-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM200707003.htm

    Zhou Hongjun, Zhong Pengfei, Zheng Jinjin, et al. Quantitative research on higher order harmonic suppression in 17~33 nm with different thickness Al filters. Optics and Precision Engineering, 2007, 15(7): 1016-1020 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM200707003.htm
    [2]
    卢发铭, 张盛, 夏元钦, 等. 双色飞秒强激光作用下的CO2分子高次谐波[J]. 红外与激光工程, 2014, 43(1): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201401013.htm

    Lu Faming, Zhang Sheng, Xia Yuanqin, et al. High harmonic generation in CO2 using two-color femtosecond laser. Infrared and Laser Engineering, 2014, 43(1): 77-80 https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201401013.htm
    [3]
    秦沛, 任玉, 刘丽炜, 等. 金属纳米颗粒等离激元共振增强非线性介质谐波的发展现状[J]. 中国光学, 2016, 9(2): 213-225. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201602005.htm

    Qin Pei, Ren Yu, Liu Liwei, et al. Development of plasmon-resonance of metal nanoparticles enhanced harmonic generation in nonlinear medium. Chinese Optics, 2016, 9(2): 213-225 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201602005.htm
    [4]
    龚梓博, 陆星, 施可彬, 等. 光学频率梳非线性传输及其在相位噪声探测中的应用[J]. 中国光学, 2015, 8(1): 39-44 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201501005.htm

    Gong Zibo, Lu Xing, Shi Kebin, et al. Nonlinear propagation of optical frequency comb and its application in phase noise detection. Chinese Optics, 2015, 8(1): 39-44 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201501005.htm
    [5]
    Krausz F, Ivanov M. Attosecond physics[J]. Review of Modern Physics, 2009, 81(1): 163-234. doi: 10.1103/RevModPhys.81.163
    [6]
    Calegari F, Ayuso D, Trabattoni A, et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses[J]. Science, 2014, 346(6207): 336-339. doi: 10.1126/science.1254061
    [7]
    Despre V, Marciniak A, Loriot V, et al. Attosecond hole migration in Benzene molecules surviving nuclear motion[J]. The Journal of Physical Chemistry Letters, 2015, 6: 426-431. doi: 10.1021/jz502493j
    [8]
    李儒新, 程亚, 冷雨欣, 等. 超快光学与超强激光技术前沿研究[J]. 中国科学: 信息科学, 2016, 46(9): 1236-1254. https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201609003.htm

    Li Ruxin, Cheng Ya, Leng Yuxin, et al. Frontiers in ultrafast optics and ultra-intense laser technology. Scientia Sinica Informationis, 2016, 46(9): 1236-1254 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201609003.htm
    [9]
    Goulielmakis E, Schultze M, Hofstetter M, et al. Single-cycle nonlinear optics[J]. Science, 2008, 320(5883): 1614-1617. doi: 10.1126/science.1157846
    [10]
    Ferrari F, Calegari F, Lucchini M, et al. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields[J]. Nature Photon, 2010, 4(12): 875-879 doi: 10.1038/nphoton.2010.250
    [11]
    Sansone G, Benedetti E, Calegari F, et al. Isolated single-cycle attosecond pulses[J]. Science, 2006, 314 (5798): 443-446. doi: 10.1126/science.1132838
    [12]
    Zhao K, Zhang Q, Chini M, et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch[J]. Optics Letters, 2012, 37(18): 3891-3893. doi: 10.1364/OL.37.003891
    [13]
    Feng X, Gilbertson S, Mashiko H, et al. Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers[J]. Physical Review Letters, 2009, 103: 183901. doi: 10.1103/PhysRevLett.103.183901
    [14]
    Vincenti H, Quere F. Attosecond lighthouses: how to use spatiotemporally coupled light fields to generate isolated attosecond pulses[J]. Physical Review Letters, 108(11): 113904.
    [15]
    Corkum P B. Plasma perspective on strong-field multiphoton ionization[J]. Physical Review Letters, 1993, 71(13): 1994-1997. doi: 10.1103/PhysRevLett.71.1994
    [16]
    Saleeres P, L'Huilier A, Lewenstein M. Coherence control of high-order harmonics[J]. Physical Review Letters, 1995, 74(19): 3776-3779. doi: 10.1103/PhysRevLett.74.3776
    [17]
    Gragossian A, Seletskiy D V, Sheik-Bahae M. Classical trajectories in polor-asymmetric laser fields: synchronous THz and XUV emission[J]. Scientific Reports, 2016, 6: 34973. doi: 10.1038/srep34973
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (1007) PDF downloads(112) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return