Citation: | Wang Siming, Zhou Weimin, Yang Zuhua, et al. Numerical simulation of vacuum electron acceleration by interaction of intense laser with conical target[J]. High Power Laser and Particle Beams, 2018, 30: 092002. doi: 10.11884/HPLPB201830.180099 |
[1] |
Sheng Z M, Weng S M, Yu L L, et al. Absorption of ultrashort intense lasers in laser-solid interactions[J]. Chinese Phys B, 2015, 24: 015201. doi: 10.1088/1674-1056/24/1/015201
|
[2] |
Wilks S C, Langdon A B, Cowan T E, et al. Energetic proton generation in ultra-intense laser-solid interactions[J]. Phys Plasmas, 2001, 8: 542-549. doi: 10.1063/1.1333697
|
[3] |
周维民, 谷渝秋, 丁永坤, 等. 超短超强激光与Cu靶相互作用中质子背向发射的实验测量[J]. 强激光与粒子束, 2004, 16(11): 1406-1408. http://www.hplpb.com.cn/article/id/421
Zhou Weimin, Gu Yuqiu, Ding Yongkun, et al. Measurement of proton jet in the interaction of ultra-short ultra-intense laser with Cu foil target. High Power Laser and Particle Beams, 2004, 16(11): 1406-1408 http://www.hplpb.com.cn/article/id/421
|
[4] |
Tabak M, Hammer J, Glinsky M E, et al. Ignition and high gain with ultrapowerful lasers[J]. Phys Plasmas, 1994, 1(5): 1626-1634. doi: 10.1063/1.870664
|
[5] |
谷渝秋, 张锋, 单连强, 等. 神光Ⅱ升级装置锥壳靶间接驱动快点火集成实验[J]. 强激光与粒子束, 2015, 27: 110101. doi: 10.11884/HPLPB201527.110101
Gu Yuqiu, Zhang Feng, Shan Lianqiang, et al. Initial indirect cone-in-shell fast ignition integrated experiment on Shenguang Ⅱ-updated facility. High Power Laser and Particle Beams, 2015, 27: 110101 doi: 10.11884/HPLPB201527.110101
|
[6] |
Tajima T, Dawson J M. Laser electron accelerator[J]. Phys Rev Lett, 1979, 43(4): 267-270. doi: 10.1103/PhysRevLett.43.267
|
[7] |
Woodward P M. A method of calculating the field over a plane aperture required to produce a given polar diagram[J]. J Inst Electr Eng, 1947, 93(10): 1554-1558.
|
[8] |
Esarey E, Sprangle P, Krall J. Laser acceleration of electrons in vacuum[J]. Phys Rev E, 1995, 52(5): 5443-5453. doi: 10.1103/PhysRevE.52.5443
|
[9] |
Wang P X, Ho Y K, Yuan X Q, et al. Vacuum electron acceleration by an intense laser[J]. Appl Phys Lett, 2001, 78(15): 2253-2255. doi: 10.1063/1.1359486
|
[10] |
Wang P X, Ho Y K, Yuan X Q, et al. Characteristics of laser-driven electron acceleration in vacuum[J]. Appl Phys Lett, 2002, 91(2): 856-866.
|
[11] |
Pang J, Ho Y K, Yuan X Q, et al. Subluminous phase velocity of a focused laser beam and vacuum laser acceleration[J]. Phys Rev E, 2002, 66: 066501.
|
[12] |
Thevenet M, Leblanc A, Kahaly S, et al. Vacuum laser acceleration of relativistic electrons using plasma mirror injectors[J]. Nat Phys, 2016, 12: 355-361. doi: 10.1038/nphys3597
|
[13] |
Xiao K D, Huang T W, Ju L B, et al. Energetic electron-bunch generation in a phase-locked longitudinal laser electric field[J]. Phys Rev E, 2016, 93: 043207. doi: 10.1103/PhysRevE.93.043207
|
[14] |
Zhang Z M, He X T, Sheng Z M, et al. Hundreds MeV monoenergetic proton bunch from interaction of 1020-21 W/cm2 circularly polarized laser pulse with tailored complex target[J]. Appl Phys Lett, 2012, 100: 134103. doi: 10.1063/1.3696885
|
[1] | Ma Liyun, Wang Yuming, Chen Yazhou. Continuous-wave electromagnetic environment effects on laser radar[J]. High Power Laser and Particle Beams, 2021, 33(12): 123012. doi: 10.11884/HPLPB202133.210385 |
[2] | Yuan Guangfu, Ma Xiaoyu, Liu Shuang, Yang Qilong. Research on lidar scanning mode[J]. High Power Laser and Particle Beams, 2020, 32(4): 041001. doi: 10.11884/HPLPB202032.190382 |
[3] | Li Meng, Jiang Lihui, Xiong Xinglong, Feng Shuai. Denoising method using empirical mode decomposition with switchable interval threshold for lidar signals[J]. High Power Laser and Particle Beams, 2014, 26(11): 111002. doi: 10.11884/HPLPB201426.111002 |
[4] | Su Yuanyuan, Wu Jin, Zhao Zhilong, Liang Na, Duan Hongcheng. Synthetic optical frequency-stepped chirp signal and its high resolution ranging demonstration[J]. High Power Laser and Particle Beams, 2014, 26(10): 101016. doi: 10.11884/HPLPB201426.101016 |
[5] | Cui Chaolong, Huang Honghua, Mei Haiping, Zhu Wenyue, Rao Ruizhong. Turbulent scintillation lidar for acquiring atmospheric turbulence information[J]. High Power Laser and Particle Beams, 2013, 25(05): 1091-1096. doi: 10.3788/HPLPB20132505.1091 |
[6] | Tang Lei, Dong Jihui, Wu Haibin. Analysis of wind field measurement results of Doppler lidar[J]. High Power Laser and Particle Beams, 2012, 24(09): 2037-2042. doi: 10.3788/HPLPB20122409.2037 |
[7] | kang sheng, wang jiang’an, chen dong, wu ronghua, ren xichuang. Measurement of visibility using lidar in rain[J]. High Power Laser and Particle Beams, 2011, 23(03): 0- . |
[8] | lu qian, hou zaihong, chen xiutao. Design of electro-optical switch in turbulent profile lidar[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- . |
[9] | liu zhengjun, li qi, wang qi. Laser radar for ground-based target orientation estimation[J]. High Power Laser and Particle Beams, 2010, 22(08): 0- . |
[10] | pan feng, xiao wen, chang junlei, wang dayong. Synthetic aperture method of digital holography for long-working-distance microscopy[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- . |
[11] | shen fahua, dong jingjing, sun dongsong, yue bin, su zhifeng. Fast method and optical device for lidar system alignment[J]. High Power Laser and Particle Beams, 2009, 21(03): 0- . |
[12] | zhang shouchuan, wu yi, hou zaihong, tan fengfu, ji yonghua, xiao liming, sun gang. Lidar measurement of atmospheric turbulence vertical profiles[J]. High Power Laser and Particle Beams, 2009, 21(12): 0- . |
[13] | bo guangyu, liu bo, zhong zhiqing, zhou jun. Development of Rayleigh-Raman-Mie lidar based on simulated signal[J]. High Power Laser and Particle Beams, 2009, 21(09): 0- . |
[14] | chi ru-li, liu dong, zhong zhi-qing, sun dong-song, zhou jun, hu huan-ling. Application and analysis of the dual Fabry-Perot etalon in a direct detection wind lidar[J]. High Power Laser and Particle Beams, 2007, 19(02): 0- . |
[15] | chi ru-li, feng su-min, zhong zhi-qing, sun dong-song, zhou jun, hu huan-ling. Doppler wind lidar with dual Fabry-Perot interferometer[J]. High Power Laser and Particle Beams, 2006, 18(01): 0- . |
[16] | liu xiao-qin, hu shun-xing, li chen, hu huan-ling, zhang yin-chao, xue xiang-hui. Atmospheric sodium measurement at Hefei by lidar[J]. High Power Laser and Particle Beams, 2006, 18(12): 0- . |
[17] | dai yang, lin zhao-xiang, zhang wen-yan, cheng xue-wu, li fa-quan, song shu-yan, gong shun-sheng. Method of atmospheric turbulence measurement by lidar[J]. High Power Laser and Particle Beams, 2006, 18(11): 0- . |
[18] | hou zai-hong, wu yi, zhang shou-chuan, wang xiao-qiang. Development of turbulence profile lidar[J]. High Power Laser and Particle Beams, 2006, 18(10): 0- . |
[19] | xie chen-bo, han yong, li chao, yue gu-ming, qi fu-di, fan ai-yuan, yin jun, yuan song, hou jun. Mobile lidar for visibility measurement[J]. High Power Laser and Particle Beams, 2005, 17(07): 0- . |
[20] | wang gang, wang shi fan. Fourier analysis method of measuring atmosphere temperature by lidar[J]. High Power Laser and Particle Beams, 2004, 16(05): 0- . |
1. | 涂绍勇,蒋炜,尹传盛,于承新,范征锋,袁永腾,蒲昱东,缪文勇,胡昕,李晋,杨轶濛,车兴森,董云松,杨冬,杨家敏. 激光间接驱动柱几何内界面减速段的流体力学不稳定性实验研究. 强激光与粒子束. 2024(12): 26-32 . ![]() | |
2. | 李亚冉. 亚微米分辨率Wolter显微镜的设计. 光学学报. 2023(03): 253-261 . ![]() | |
3. | 林祖德,戴羽,徐梦飞,曹佳炜,郑坤宇,魏宁,韩良智,王晓林,刘景全. 基于高精度3D打印工艺的ICF调制靶. 强激光与粒子束. 2023(10): 64-70 . ![]() | |
4. | 方可,张喆,李玉同,张杰. 双锥对撞点火机制2020年冬季实验中的瑞利-泰勒不稳定性分析. 物理学报. 2022(03): 228-236 . ![]() |