Miao Wenyong, Yuan Yongteng, Ding Yongkun, et al. Experiments of radiation-driven Rayleigh-Taylor instability on the Shenguang-Ⅱ laser facility[J]. High Power Laser and Particle Beams, 2015, 27: 032016. doi: 10.11884/HPLPB201527.032016
Citation: Wang Siming, Zhou Weimin, Yang Zuhua, et al. Numerical simulation of vacuum electron acceleration by interaction of intense laser with conical target[J]. High Power Laser and Particle Beams, 2018, 30: 092002. doi: 10.11884/HPLPB201830.180099

Numerical simulation of vacuum electron acceleration by interaction of intense laser with conical target

doi: 10.11884/HPLPB201830.180099
  • Received Date: 2018-04-04
  • Rev Recd Date: 2018-06-21
  • Publish Date: 2018-09-15
  • Vacuum laser acceleration (VLA) has the advantages of large gradient of acceleration field and large charge of collimated electrons. For certain topics, the production of electrons with initial velocity and the injection of these electrons in vacuum are main problems restricting the development of VLA. A new vacuum laser acceleration scheme is proposed in this paper, in which an ultra-short ultra-intense laser pulse is grazing incident into a cone target.Two-dimensional particle-in-cell simulation is used to confirm this acceleration scheme, which can produce collimated GeV-class electron beams in millimeters. The intense laser pulse is a linearly y-polarized laser with intensity of 1021 W/cm2. The effect of radius of the target is studied in this paper.
  • [1]
    Sheng Z M, Weng S M, Yu L L, et al. Absorption of ultrashort intense lasers in laser-solid interactions[J]. Chinese Phys B, 2015, 24: 015201. doi: 10.1088/1674-1056/24/1/015201
    [2]
    Wilks S C, Langdon A B, Cowan T E, et al. Energetic proton generation in ultra-intense laser-solid interactions[J]. Phys Plasmas, 2001, 8: 542-549. doi: 10.1063/1.1333697
    [3]
    周维民, 谷渝秋, 丁永坤, 等. 超短超强激光与Cu靶相互作用中质子背向发射的实验测量[J]. 强激光与粒子束, 2004, 16(11): 1406-1408. http://www.hplpb.com.cn/article/id/421

    Zhou Weimin, Gu Yuqiu, Ding Yongkun, et al. Measurement of proton jet in the interaction of ultra-short ultra-intense laser with Cu foil target. High Power Laser and Particle Beams, 2004, 16(11): 1406-1408 http://www.hplpb.com.cn/article/id/421
    [4]
    Tabak M, Hammer J, Glinsky M E, et al. Ignition and high gain with ultrapowerful lasers[J]. Phys Plasmas, 1994, 1(5): 1626-1634. doi: 10.1063/1.870664
    [5]
    谷渝秋, 张锋, 单连强, 等. 神光Ⅱ升级装置锥壳靶间接驱动快点火集成实验[J]. 强激光与粒子束, 2015, 27: 110101. doi: 10.11884/HPLPB201527.110101

    Gu Yuqiu, Zhang Feng, Shan Lianqiang, et al. Initial indirect cone-in-shell fast ignition integrated experiment on Shenguang Ⅱ-updated facility. High Power Laser and Particle Beams, 2015, 27: 110101 doi: 10.11884/HPLPB201527.110101
    [6]
    Tajima T, Dawson J M. Laser electron accelerator[J]. Phys Rev Lett, 1979, 43(4): 267-270. doi: 10.1103/PhysRevLett.43.267
    [7]
    Woodward P M. A method of calculating the field over a plane aperture required to produce a given polar diagram[J]. J Inst Electr Eng, 1947, 93(10): 1554-1558.
    [8]
    Esarey E, Sprangle P, Krall J. Laser acceleration of electrons in vacuum[J]. Phys Rev E, 1995, 52(5): 5443-5453. doi: 10.1103/PhysRevE.52.5443
    [9]
    Wang P X, Ho Y K, Yuan X Q, et al. Vacuum electron acceleration by an intense laser[J]. Appl Phys Lett, 2001, 78(15): 2253-2255. doi: 10.1063/1.1359486
    [10]
    Wang P X, Ho Y K, Yuan X Q, et al. Characteristics of laser-driven electron acceleration in vacuum[J]. Appl Phys Lett, 2002, 91(2): 856-866.
    [11]
    Pang J, Ho Y K, Yuan X Q, et al. Subluminous phase velocity of a focused laser beam and vacuum laser acceleration[J]. Phys Rev E, 2002, 66: 066501.
    [12]
    Thevenet M, Leblanc A, Kahaly S, et al. Vacuum laser acceleration of relativistic electrons using plasma mirror injectors[J]. Nat Phys, 2016, 12: 355-361. doi: 10.1038/nphys3597
    [13]
    Xiao K D, Huang T W, Ju L B, et al. Energetic electron-bunch generation in a phase-locked longitudinal laser electric field[J]. Phys Rev E, 2016, 93: 043207. doi: 10.1103/PhysRevE.93.043207
    [14]
    Zhang Z M, He X T, Sheng Z M, et al. Hundreds MeV monoenergetic proton bunch from interaction of 1020-21 W/cm2 circularly polarized laser pulse with tailored complex target[J]. Appl Phys Lett, 2012, 100: 134103. doi: 10.1063/1.3696885
  • Relative Articles

    [1]Ma Liyun, Wang Yuming, Chen Yazhou. Continuous-wave electromagnetic environment effects on laser radar[J]. High Power Laser and Particle Beams, 2021, 33(12): 123012. doi: 10.11884/HPLPB202133.210385
    [2]Yuan Guangfu, Ma Xiaoyu, Liu Shuang, Yang Qilong. Research on lidar scanning mode[J]. High Power Laser and Particle Beams, 2020, 32(4): 041001. doi: 10.11884/HPLPB202032.190382
    [3]Li Meng, Jiang Lihui, Xiong Xinglong, Feng Shuai. Denoising method using empirical mode decomposition with switchable interval threshold for lidar signals[J]. High Power Laser and Particle Beams, 2014, 26(11): 111002. doi: 10.11884/HPLPB201426.111002
    [4]Su Yuanyuan, Wu Jin, Zhao Zhilong, Liang Na, Duan Hongcheng. Synthetic optical frequency-stepped chirp signal and its high resolution ranging demonstration[J]. High Power Laser and Particle Beams, 2014, 26(10): 101016. doi: 10.11884/HPLPB201426.101016
    [5]Cui Chaolong, Huang Honghua, Mei Haiping, Zhu Wenyue, Rao Ruizhong. Turbulent scintillation lidar for acquiring atmospheric turbulence information[J]. High Power Laser and Particle Beams, 2013, 25(05): 1091-1096. doi: 10.3788/HPLPB20132505.1091
    [6]Tang Lei, Dong Jihui, Wu Haibin. Analysis of wind field measurement results of Doppler lidar[J]. High Power Laser and Particle Beams, 2012, 24(09): 2037-2042. doi: 10.3788/HPLPB20122409.2037
    [7]kang sheng, wang jiang’an, chen dong, wu ronghua, ren xichuang. Measurement of visibility using lidar in rain[J]. High Power Laser and Particle Beams, 2011, 23(03): 0- .
    [8]lu qian, hou zaihong, chen xiutao. Design of electro-optical switch in turbulent profile lidar[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [9]liu zhengjun, li qi, wang qi. Laser radar for ground-based target orientation estimation[J]. High Power Laser and Particle Beams, 2010, 22(08): 0- .
    [10]pan feng, xiao wen, chang junlei, wang dayong. Synthetic aperture method of digital holography for long-working-distance microscopy[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- .
    [11]shen fahua, dong jingjing, sun dongsong, yue bin, su zhifeng. Fast method and optical device for lidar system alignment[J]. High Power Laser and Particle Beams, 2009, 21(03): 0- .
    [12]zhang shouchuan, wu yi, hou zaihong, tan fengfu, ji yonghua, xiao liming, sun gang. Lidar measurement of atmospheric turbulence vertical profiles[J]. High Power Laser and Particle Beams, 2009, 21(12): 0- .
    [13]bo guangyu, liu bo, zhong zhiqing, zhou jun. Development of Rayleigh-Raman-Mie lidar based on simulated signal[J]. High Power Laser and Particle Beams, 2009, 21(09): 0- .
    [14]chi ru-li, liu dong, zhong zhi-qing, sun dong-song, zhou jun, hu huan-ling. Application and analysis of the dual Fabry-Perot etalon in a direct detection wind lidar[J]. High Power Laser and Particle Beams, 2007, 19(02): 0- .
    [15]chi ru-li, feng su-min, zhong zhi-qing, sun dong-song, zhou jun, hu huan-ling. Doppler wind lidar with dual Fabry-Perot interferometer[J]. High Power Laser and Particle Beams, 2006, 18(01): 0- .
    [16]liu xiao-qin, hu shun-xing, li chen, hu huan-ling, zhang yin-chao, xue xiang-hui. Atmospheric sodium measurement at Hefei by lidar[J]. High Power Laser and Particle Beams, 2006, 18(12): 0- .
    [17]dai yang, lin zhao-xiang, zhang wen-yan, cheng xue-wu, li fa-quan, song shu-yan, gong shun-sheng. Method of atmospheric turbulence measurement by lidar[J]. High Power Laser and Particle Beams, 2006, 18(11): 0- .
    [18]hou zai-hong, wu yi, zhang shou-chuan, wang xiao-qiang. Development of turbulence profile lidar[J]. High Power Laser and Particle Beams, 2006, 18(10): 0- .
    [19]xie chen-bo, han yong, li chao, yue gu-ming, qi fu-di, fan ai-yuan, yin jun, yuan song, hou jun. Mobile lidar for visibility measurement[J]. High Power Laser and Particle Beams, 2005, 17(07): 0- .
    [20]wang gang, wang shi fan. Fourier analysis method of measuring atmosphere temperature by lidar[J]. High Power Laser and Particle Beams, 2004, 16(05): 0- .
  • Cited by

    Periodical cited type(4)

    1. 涂绍勇,蒋炜,尹传盛,于承新,范征锋,袁永腾,蒲昱东,缪文勇,胡昕,李晋,杨轶濛,车兴森,董云松,杨冬,杨家敏. 激光间接驱动柱几何内界面减速段的流体力学不稳定性实验研究. 强激光与粒子束. 2024(12): 26-32 . 本站查看
    2. 李亚冉. 亚微米分辨率Wolter显微镜的设计. 光学学报. 2023(03): 253-261 .
    3. 林祖德,戴羽,徐梦飞,曹佳炜,郑坤宇,魏宁,韩良智,王晓林,刘景全. 基于高精度3D打印工艺的ICF调制靶. 强激光与粒子束. 2023(10): 64-70 . 本站查看
    4. 方可,张喆,李玉同,张杰. 双锥对撞点火机制2020年冬季实验中的瑞利-泰勒不稳定性分析. 物理学报. 2022(03): 228-236 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.4 %FULLTEXT: 19.4 %META: 79.0 %META: 79.0 %PDF: 1.6 %PDF: 1.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.9 %其他: 3.9 %其他: 0.9 %其他: 0.9 %Astoria: 0.1 %Astoria: 0.1 %Canada: 0.3 %Canada: 0.3 %China: 0.7 %China: 0.7 %Egypt: 0.2 %Egypt: 0.2 %Germany: 0.3 %Germany: 0.3 %India: 0.4 %India: 0.4 %Lithuania: 0.1 %Lithuania: 0.1 %Malvern: 0.2 %Malvern: 0.2 %Netherlands: 0.1 %Netherlands: 0.1 %Rochester: 0.2 %Rochester: 0.2 %Saudi Arabia: 0.1 %Saudi Arabia: 0.1 %State College: 0.1 %State College: 0.1 %United States: 1.6 %United States: 1.6 %Valencia: 0.2 %Valencia: 0.2 %[]: 0.4 %[]: 0.4 %上海: 2.5 %上海: 2.5 %东莞: 0.1 %东莞: 0.1 %中山: 0.1 %中山: 0.1 %俄亥俄: 0.1 %俄亥俄: 0.1 %俄亥俄州: 0.2 %俄亥俄州: 0.2 %北京: 22.8 %北京: 22.8 %十堰: 0.1 %十堰: 0.1 %台州: 0.4 %台州: 0.4 %合肥: 0.1 %合肥: 0.1 %天津: 0.3 %天津: 0.3 %密蘇里城: 0.1 %密蘇里城: 0.1 %广州: 0.1 %广州: 0.1 %张家口: 0.1 %张家口: 0.1 %成都: 0.5 %成都: 0.5 %摩西湖: 0.1 %摩西湖: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.0 %杭州: 1.0 %松恩-菲尤拉讷郡: 0.1 %松恩-菲尤拉讷郡: 0.1 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 0.1 %深圳: 0.1 %温州: 0.3 %温州: 0.3 %湖州: 0.2 %湖州: 0.2 %漯河: 0.4 %漯河: 0.4 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 14.1 %芒廷维尤: 14.1 %芝加哥: 0.1 %芝加哥: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 44.0 %西宁: 44.0 %西安: 0.4 %西安: 0.4 %诺沃克: 0.1 %诺沃克: 0.1 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.1 %运城: 0.1 %郑州: 0.5 %郑州: 0.5 %长沙: 0.3 %长沙: 0.3 %长治: 0.1 %长治: 0.1 %长滩: 0.1 %长滩: 0.1 %阳泉: 0.3 %阳泉: 0.3 %其他其他AstoriaCanadaChinaEgyptGermanyIndiaLithuaniaMalvernNetherlandsRochesterSaudi ArabiaState CollegeUnited StatesValencia[]上海东莞中山俄亥俄俄亥俄州北京十堰台州合肥天津密蘇里城广州张家口成都摩西湖普洱杭州松恩-菲尤拉讷郡桃园武汉济南深圳温州湖州漯河福州秦皇岛绵阳芒廷维尤芝加哥衢州西宁西安诺沃克贵阳运城郑州长沙长治长滩阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (1064) PDF downloads(191) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return