Le Wei, Huang Jinglin, Yang Qiang, et al. Surface-enhanced Raman effect of new coronavirus S protein in gold nanoparticles[J]. High Power Laser and Particle Beams, 2021, 33: 119001. doi: 10.11884/HPLPB202133.210466
Citation: Wang Siming, Zhou Weimin, Yang Zuhua, et al. Numerical simulation of vacuum electron acceleration by interaction of intense laser with conical target[J]. High Power Laser and Particle Beams, 2018, 30: 092002. doi: 10.11884/HPLPB201830.180099

Numerical simulation of vacuum electron acceleration by interaction of intense laser with conical target

doi: 10.11884/HPLPB201830.180099
  • Received Date: 2018-04-04
  • Rev Recd Date: 2018-06-21
  • Publish Date: 2018-09-15
  • Vacuum laser acceleration (VLA) has the advantages of large gradient of acceleration field and large charge of collimated electrons. For certain topics, the production of electrons with initial velocity and the injection of these electrons in vacuum are main problems restricting the development of VLA. A new vacuum laser acceleration scheme is proposed in this paper, in which an ultra-short ultra-intense laser pulse is grazing incident into a cone target.Two-dimensional particle-in-cell simulation is used to confirm this acceleration scheme, which can produce collimated GeV-class electron beams in millimeters. The intense laser pulse is a linearly y-polarized laser with intensity of 1021 W/cm2. The effect of radius of the target is studied in this paper.
  • [1]
    Sheng Z M, Weng S M, Yu L L, et al. Absorption of ultrashort intense lasers in laser-solid interactions[J]. Chinese Phys B, 2015, 24: 015201. doi: 10.1088/1674-1056/24/1/015201
    [2]
    Wilks S C, Langdon A B, Cowan T E, et al. Energetic proton generation in ultra-intense laser-solid interactions[J]. Phys Plasmas, 2001, 8: 542-549. doi: 10.1063/1.1333697
    [3]
    周维民, 谷渝秋, 丁永坤, 等. 超短超强激光与Cu靶相互作用中质子背向发射的实验测量[J]. 强激光与粒子束, 2004, 16(11): 1406-1408. http://www.hplpb.com.cn/article/id/421

    Zhou Weimin, Gu Yuqiu, Ding Yongkun, et al. Measurement of proton jet in the interaction of ultra-short ultra-intense laser with Cu foil target. High Power Laser and Particle Beams, 2004, 16(11): 1406-1408 http://www.hplpb.com.cn/article/id/421
    [4]
    Tabak M, Hammer J, Glinsky M E, et al. Ignition and high gain with ultrapowerful lasers[J]. Phys Plasmas, 1994, 1(5): 1626-1634. doi: 10.1063/1.870664
    [5]
    谷渝秋, 张锋, 单连强, 等. 神光Ⅱ升级装置锥壳靶间接驱动快点火集成实验[J]. 强激光与粒子束, 2015, 27: 110101. doi: 10.11884/HPLPB201527.110101

    Gu Yuqiu, Zhang Feng, Shan Lianqiang, et al. Initial indirect cone-in-shell fast ignition integrated experiment on Shenguang Ⅱ-updated facility. High Power Laser and Particle Beams, 2015, 27: 110101 doi: 10.11884/HPLPB201527.110101
    [6]
    Tajima T, Dawson J M. Laser electron accelerator[J]. Phys Rev Lett, 1979, 43(4): 267-270. doi: 10.1103/PhysRevLett.43.267
    [7]
    Woodward P M. A method of calculating the field over a plane aperture required to produce a given polar diagram[J]. J Inst Electr Eng, 1947, 93(10): 1554-1558.
    [8]
    Esarey E, Sprangle P, Krall J. Laser acceleration of electrons in vacuum[J]. Phys Rev E, 1995, 52(5): 5443-5453. doi: 10.1103/PhysRevE.52.5443
    [9]
    Wang P X, Ho Y K, Yuan X Q, et al. Vacuum electron acceleration by an intense laser[J]. Appl Phys Lett, 2001, 78(15): 2253-2255. doi: 10.1063/1.1359486
    [10]
    Wang P X, Ho Y K, Yuan X Q, et al. Characteristics of laser-driven electron acceleration in vacuum[J]. Appl Phys Lett, 2002, 91(2): 856-866.
    [11]
    Pang J, Ho Y K, Yuan X Q, et al. Subluminous phase velocity of a focused laser beam and vacuum laser acceleration[J]. Phys Rev E, 2002, 66: 066501.
    [12]
    Thevenet M, Leblanc A, Kahaly S, et al. Vacuum laser acceleration of relativistic electrons using plasma mirror injectors[J]. Nat Phys, 2016, 12: 355-361. doi: 10.1038/nphys3597
    [13]
    Xiao K D, Huang T W, Ju L B, et al. Energetic electron-bunch generation in a phase-locked longitudinal laser electric field[J]. Phys Rev E, 2016, 93: 043207. doi: 10.1103/PhysRevE.93.043207
    [14]
    Zhang Z M, He X T, Sheng Z M, et al. Hundreds MeV monoenergetic proton bunch from interaction of 1020-21 W/cm2 circularly polarized laser pulse with tailored complex target[J]. Appl Phys Lett, 2012, 100: 134103. doi: 10.1063/1.3696885
  • Relative Articles

    [1]Huang Jinglin, Zhou Minjie, Le Wei, Chen Guo, Ni Shuang, Niu Gao, Li Zeyu, Zhao Zongqing, He Zhibing, Li Bo, Zhao Songnan, Zhang Baohan, Du Kai. Detection of spike protein of SARS-CoV-2 by surface enhanced Raman spectroscopy[J]. High Power Laser and Particle Beams, 2020, 32(6): 069001. doi: 10.11884/HPLPB202032.200145
    [2]Li Mingbin, Wu Xuezhong, Dong Peitao, Chen Jian. Fabrication of gold flower-like arrays based on nanosphere lithography for Raman enhancement[J]. High Power Laser and Particle Beams, 2015, 27(02): 024153. doi: 10.11884/HPLPB201527.024153
    [3]Wang Yanbin. Feasibility study of ICF ignition by swift heavy ions irradiation[J]. High Power Laser and Particle Beams, 2013, 25(01): 67-70. doi: 10.3788/HPLPB20132501.0067
    [4]Lu Jianxin, Lan Xiaofei, Huang Yongsheng, Wang Leijian, Xi Xiaofeng, Tang Xiuzhang, Yang Dawei. Energy spectra of protons driven by ultra-short laser interaction with thin gold foils[J]. High Power Laser and Particle Beams, 2012, 24(08): 1879-1881. doi: 10.3788/HPLPB20122408.1879
    [5]huang yongjun, wen guangjun, li tianqian, xie kang. Effect of negative permeability on negative permittivity in electromagnetic metamaterials[J]. High Power Laser and Particle Beams, 2010, 22(10): 0- .
    [6]hu zhang-hu, wang qiong, song yuan-hong, wang you-nian. Polarization effect and energy loss in interactions of charged particles with magnetized plasmas[J]. High Power Laser and Particle Beams, 2008, 20(11): 0- .
    [7]guo bin, tang yong-jian, luo jiang-shan, cheng jian-ping. In-situ growth of gold nanostructure on glass substrates by light irradiation and their spectral properties[J]. High Power Laser and Particle Beams, 2008, 20(12): 0- .
    [8]guo bin, tang yong-jian, cheng jian-ping, luo jiang-shan. Preparation of mesoporous SiO2 nanorods and anchoring of Au nanoparticles on their surface[J]. High Power Laser and Particle Beams, 2008, 20(05): 0- .
    [9]feng guang-yao, pei yuan-ji, wang xiang-qi. Simulation and analysis of the interaction between electron beam and industrial flue gas[J]. High Power Laser and Particle Beams, 2006, 18(10): 0- .
    [10]lin xiao-dong, wu zheng-mao, xia guang-qiong, chen jian-guo. Numerical research of interactions between Gaussian-shaped spatial solitons[J]. High Power Laser and Particle Beams, 2006, 18(03): 0- .
    [11]wang guang-chang, zheng zhi-jian, yang xiang-dong, gu yu-qiu, liu hong-jie, wen tian-shu, ge fang-fang, jiao chun-ye, zhou wei-min, zhang shuang-gen, wang xiang-xian. Measurement of transition radiation in femtosecond laser-solid target interaction[J]. High Power Laser and Particle Beams, 2005, 17(06): 0- .
    [12]yuan zhong-cai, shi jia-ming, wang jia-chun. Experimental studies of the interaction of microwaves with mixture burning plasmas in the atmosphere[J]. High Power Laser and Particle Beams, 2005, 17(05): 0- .
    [13]ma yan-yun, chang wen-wei, huang wei, zhuo hong-bing, yin yan. Local oscillating electron heating mechanism during laser plasma interaction[J]. High Power Laser and Particle Beams, 2005, 17(01): 0- .
    [14]zheng li-yi, pan xu-dong, chen xing-wu, song hai-feng. Interacting multiple model algorithm in target tracking[J]. High Power Laser and Particle Beams, 2005, 17(09): 0- .
    [15]zhou wei-min, gu yu-qiu, ding yong-kun, zheng zhi-jian, cai da-feng, chunyu shu-tai, wen tian-shu, chen hao, jiao chun-ye, ge fang-fang, wang guang-chang, you yong-lu, he ying-ling, . Measurement of proton jet in the interaction of ultra-short ultra-intense laser with Cu foil target[J]. High Power Laser and Particle Beams, 2004, 16(11): 0- .
    [16]yin yan, chang wen-wei, ma yan-yun, guo shao-feng, xu han. Energetic ions generation in the interaction between ultrashort ultraintense laser pulse and solid target[J]. High Power Laser and Particle Beams, 2004, 16(06): 0- .
    [17]jiao chun-ye, gu yu-qiu, zhang bao-han, zheng zhi-jian, yang xiang-dong, cai da-feng, zhou wei-min, wen tian-shu, wang guang-chang, chen hao. Measurement of spontaneous magnetic field in the interactions of femtosecond laser with solid targets[J]. High Power Laser and Particle Beams, 2004, 16(05): 0- .
    [18]ma li-ke, lu qi-sheng, zhao guo-min, jiang hou-man. Geometrical aspects of laser heating the flying cylinder[J]. High Power Laser and Particle Beams, 2004, 16(12): 0- .
    [19]he xu zhao, yi shi he. Interaction of power laser beam with supersonic free shear layer[J]. High Power Laser and Particle Beams, 2003, 15(03): 0- .
    [20]peng hui-min, he bin, zheng wu-di, yu chnn-fu. Residual epectron energy in light element gases produced by linear polarized high intense laser[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- .
  • Cited by

    Periodical cited type(2)

    1. 姜恒,张哲,江申,董妥. 表面增强拉曼光谱在呼吸道病毒检测中的研究进展. 检验医学与临床. 2023(14): 2096-2099 .
    2. 鲁佳佳,杨举,古捷,苏丽娇,陶欣,张郡童,陈艳,杨丽娟. 胺基化柱芳烃修饰的金纳米粒子及其催化活性分析. 分析化学. 2022(12): 1832-1844 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.3 %FULLTEXT: 15.3 %META: 77.6 %META: 77.6 %PDF: 7.1 %PDF: 7.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.6 %其他: 3.6 %其他: 0.5 %其他: 0.5 %China: 0.9 %China: 0.9 %College Station: 0.2 %College Station: 0.2 %India: 0.2 %India: 0.2 %Korea Republic of: 0.1 %Korea Republic of: 0.1 %Latvia: 0.2 %Latvia: 0.2 %Poland: 0.1 %Poland: 0.1 %Taiwan, China: 0.2 %Taiwan, China: 0.2 %United States: 0.9 %United States: 0.9 %[]: 0.9 %[]: 0.9 %上海: 1.5 %上海: 1.5 %东京: 0.3 %东京: 0.3 %中卫: 0.1 %中卫: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.2 %丽水: 0.2 %京都: 0.1 %京都: 0.1 %保定: 0.1 %保定: 0.1 %六安: 0.1 %六安: 0.1 %兰州: 0.1 %兰州: 0.1 %内江: 0.1 %内江: 0.1 %北京: 3.4 %北京: 3.4 %十堰: 0.1 %十堰: 0.1 %南京: 0.9 %南京: 0.9 %南平: 0.1 %南平: 0.1 %南昌: 0.1 %南昌: 0.1 %厦门: 0.2 %厦门: 0.2 %台州: 1.1 %台州: 1.1 %合肥: 0.4 %合肥: 0.4 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.3 %哥伦布: 0.3 %嘉兴: 0.1 %嘉兴: 0.1 %四平: 0.2 %四平: 0.2 %夏延: 0.1 %夏延: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.2 %天津: 0.2 %太原: 0.2 %太原: 0.2 %威海: 0.1 %威海: 0.1 %孝感: 0.1 %孝感: 0.1 %孟买: 0.2 %孟买: 0.2 %宁波: 0.1 %宁波: 0.1 %宣城: 0.1 %宣城: 0.1 %常德: 0.1 %常德: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.3 %广州: 0.3 %廊坊: 0.1 %廊坊: 0.1 %延边朝鲜族自治州: 0.1 %延边朝鲜族自治州: 0.1 %张家口: 0.4 %张家口: 0.4 %徐州: 0.2 %徐州: 0.2 %成都: 1.0 %成都: 1.0 %扬州: 0.2 %扬州: 0.2 %无锡: 0.1 %无锡: 0.1 %旧金山: 0.1 %旧金山: 0.1 %昆明: 0.3 %昆明: 0.3 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 2.2 %杭州: 2.2 %柳州: 0.2 %柳州: 0.2 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 0.1 %洛阳: 0.1 %海口: 0.1 %海口: 0.1 %深圳: 0.6 %深圳: 0.6 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 1.1 %湖州: 1.1 %漯河: 0.2 %漯河: 0.2 %烟台: 0.1 %烟台: 0.1 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 1.3 %绵阳: 1.3 %芒廷维尤: 25.0 %芒廷维尤: 25.0 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.3 %苏州: 0.3 %衢州: 0.9 %衢州: 0.9 %西宁: 41.3 %西宁: 41.3 %西安: 0.2 %西安: 0.2 %西雅图: 0.1 %西雅图: 0.1 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.4 %贵阳: 0.4 %运城: 1.0 %运城: 1.0 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.5 %郑州: 0.5 %重庆: 0.2 %重庆: 0.2 %金华: 0.3 %金华: 0.3 %银川: 0.1 %银川: 0.1 %长春: 0.3 %长春: 0.3 %长沙: 0.2 %长沙: 0.2 %长治: 0.3 %长治: 0.3 %阳泉: 0.1 %阳泉: 0.1 %鞍山: 0.1 %鞍山: 0.1 %韩国大田: 0.2 %韩国大田: 0.2 %首尔: 0.2 %首尔: 0.2 %黑河: 0.1 %黑河: 0.1 %其他其他ChinaCollege StationIndiaKorea Republic ofLatviaPolandTaiwan, ChinaUnited States[]上海东京中卫中山临汾丹东丽水京都保定六安兰州内江北京十堰南京南平南昌厦门台州合肥哈尔滨哥伦布嘉兴四平夏延大连天津太原威海孝感孟买宁波宣城常德平顶山广州廊坊延边朝鲜族自治州张家口徐州成都扬州无锡旧金山昆明晋城普洱朝阳杭州柳州武汉沈阳洛阳海口深圳温州渭南湖州漯河烟台盐城石家庄福州秦皇岛纽约绍兴绵阳芒廷维尤芝加哥苏州衢州西宁西安西雅图诺沃克贵阳运城连云港邯郸郑州重庆金华银川长春长沙长治阳泉鞍山韩国大田首尔黑河

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (1064) PDF downloads(191) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return