Volume 30 Issue 9
Sep.  2018
Turn off MathJax
Article Contents
Rao Junfeng, Zhang Wei, Li Zi, et al. Nanosecond pulse generator with avalanche transistors in series[J]. High Power Laser and Particle Beams, 2018, 30: 095002. doi: 10.11884/HPLPB201830.180103
Citation: Rao Junfeng, Zhang Wei, Li Zi, et al. Nanosecond pulse generator with avalanche transistors in series[J]. High Power Laser and Particle Beams, 2018, 30: 095002. doi: 10.11884/HPLPB201830.180103

Nanosecond pulse generator with avalanche transistors in series

doi: 10.11884/HPLPB201830.180103
  • Received Date: 2018-04-09
  • Rev Recd Date: 2018-05-03
  • Publish Date: 2018-09-15
  • Avalanche transistors have been widely used in nanosecond pulse generators because of their short rise time, high-frequency and other characteristics. In order to increase the output voltage amplitude, Marx circuits based on cascaded switches are often used. In this paper, diodes were used to replace some current-limiting resistors in traditional Marx circuits based on cascaded switches to reduce the energy loss, to speed up the charging speed, and to increase the repetitive frequency. The influences of capacitance and the current limiting resistor on the output voltage amplitude and frequency are analyzed. By testing the breakdown of a single BJT, the minimum on-resistance of the single BJT was calculated to be about 2.5 Ω, and the equivalent internal resistance of the Marx circuit based on cascaded switches reduced the output voltage amplitude over the load, hence multiple Marx circuits in parallel were used to increase the output voltage amplitude. By changing the number of Marx parallel modules, the influence of the equivalent internal resistance of the circuit on the output pulse was studied. By changing the load resistance, it is verified that the Marx circuit in parallel had a better boosting effect over low-resistance loads. The experiments show that, nanosecond pluses with rise time of 3.4 ns, amplitude of 2.5 kV and repetitive frequency of 15 kHz were obtained over a 50 Ω load with four Marx circuits in parallel.
  • loading
  • [1]
    杨茜, 易红宏, 唐晓龙, 等. 低温等离子体处理工业废气中甲苯的研究进展[J]. 安全与环境工程, 2017, 24(1): 77-83. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201701013.htm

    Yang Qian, Yi Honghong, Tang Xiaolong, et al. Research progress in treatment of toluene in industrial waste gas by non-thermal plasma technology. Safety and Environmental Engineering, 2017, 24(1): 77-83 https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201701013.htm
    [2]
    张贵剑, 李凯, 林强, 等. 低温等离子体技术脱除大气污染物的研究进展[J]. 材料导报, 2015, 29(1): 137-142. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201501026.htm

    Zhang Guijian, Li Kai, Lin Qiang, et al. Research progress of removing atmospheric pollutants by non-thermal plasma technology. Materials Review, 2015, 29(1): 137-142 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201501026.htm
    [3]
    李兆杰, 杨丽君, 刘小菁, 等. 辉光放电低温等离子体技术对微生物的杀菌动力学及杀菌机制[J]. 食品科学, 2015, 36(11): 167-171. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201511036.htm

    Li Zhaojie, Yang Lijun, Liu Xiaojing, et al. Bactericidal kinetics and mechanisms of low temperature glow discharge plasma. Food Science, 2015, 36(11): 167-171 https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201511036.htm
    [4]
    乔维维, 黄明明, 王佳媚, 等. 低温等离子体对生鲜牛肉杀菌效果及色泽的影响[J]. 食品科学, 2017, 38(23): 237-242. doi: 10.7506/spkx1002-6630-201723038

    Qiao Weiwei, Huang Mingming, Wang Jiamei, et al. Effect of cold plasma on sterilization and color of fresh beef. Food Science, 2017, 38(23): 237-242 doi: 10.7506/spkx1002-6630-201723038
    [5]
    胥萌, 晋伟, 周济, 等. 低温等离子体在矿物加工领域应用现状[J]. 煤炭科学技术, 2017, 45(9): 201-208. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201709033.htm

    Xu Meng, Jin Wei, Zhou Ji, et al. Application status of low temperature plasma in mineral processing field. Coal Science and Technology, 2017, 45(9): 201-208 https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201709033.htm
    [6]
    姜竹茂, 张颂, 廖新浴, 等. 低温等离子体在生物聚合物降解改性中的研究进展[J]. 食品科学, 2017, 38(23): 282-288. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201723045.htm

    Jiang Zhumao, Zhang Song, Liao Xinyu, et al. Progress in the application of non-thermal plasma in degradation and modification of biopolymers. Food Science, 2017, 38(23): 282-288 https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201723045.htm
    [7]
    Li Jiangtao, Zhong Xu, Li Jianhao, et al. Theoretical analysis and experimental study on an avalanche transistor-based Marx generator[J]. IEEE Trans Plasma Science, 2015, 43(10): 3399-3405.
    [8]
    Tan J W, Zhong Z M, Liu Y, et al. Research on high-repetition high-voltage nanosecond rectangular pulse generator based on avalanche transistor[C]//The Seventh Asia-Pacific Conference on Environmental Electromagnetics. 2015: 73-76.
    [9]
    徐乐, 江伟华. 基于雪崩三极管的快前沿脉冲功率源研究[J]. 强激光与粒子束, 2016, 28: 015001. doi: 10.11884/HPLPB201628.015001

    Xu Le, Jiang Weihua. Study of fast rising pulsed power generator based on avalanche transistors. High Power Laser and Particle Beams, 2016, 28: 015001 doi: 10.11884/HPLPB201628.015001
    [10]
    赵政, 钟旭, 李征, 等. 基于雪崩三极管的高重复频率高压纳秒脉冲产生方法综述[J]. 电工技术学报, 2017, 32(8): 33-47, 54.

    Zhao Zheng, Zhong Xu, Li Zheng, et al. Review on the methods of generating high-repetitive-frequency high-voltage nanosecond pulses based on avalanche transistors. Transactions of China Electrotechnical Society, 2017, 32(8): 33-47, 54
    [11]
    Ding W Deidong, Wang Yanan, Fan Chuan, et al. A subnanosecond jitter trigger generator utilizing trigatron switch and avalanche transistor circuit[J]. IEEE Trans Plasma Science, 2015, 43(4): 1054-1062.
    [12]
    饶俊峰, 张伟, 李孜, 等. 双极结型晶体管的集电结反向雪崩击穿特性[J]. 强激光与粒子束, 2016, 28: 125002. doi: 10.11884/HPLPB201628.160158

    Rao Junfeng, Zhang Wei, Li Zi, et al. Reverse avalanche breakdown characteristics of collector junctions in bipolar junction transistors. High Power Laser and Particle Beams, 2016, 28: 125002 doi: 10.11884/HPLPB201628.160158
    [13]
    周星, 赵敏, 程二威, 等. 一种小型化双指数脉冲源的设计[J]. 强激光与粒子束, 2014, 26: 063202. doi: 10.11884/HPLPB201426.063202

    Zhou Xing, Zhao Min, Cheng Erwei, et al. Design of miniature double-exponential pulse generator. High Power Laser and Particle Beams, 2014, 26: 063202 doi: 10.11884/HPLPB201426.063202
    [14]
    Bishop A I, Barker P F. Subnanosecond Pockels cell switching using avalanche transistors[J]. Review of Scientific Instruments, 2006, 77: 044701.
    [15]
    Li Zi, Li Pan, Rao Junfeng, et al. Theoretical analysis and improvement on pulse generator using BJTs as switches[J]. IEEE Trans Plasma Science, 2016, 44(10): 2053-2059.
    [16]
    饶俊峰, 皮特尔, 李孜, 等. 带截尾开关的高频纳秒脉冲功率源设计[J]. 高电压技术, 2017, 43(6): 1800-1807. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201706008.htm

    Rao Junfeng, Pi Teer, Li Zi, et al. Design on high-frequency nanosecond pulse power source with truncated switches. High voltage Engineering, 2017, 43(6): 1800-1807 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201706008.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article views (2232) PDF downloads(364) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return