Zhang Xuehai, Wei Heli, Dai Congming, et al. A Study of scattering properties of fly ash aerosols: comparison of laboratory and Lorenz-Mie results[J]. High Power Laser and Particle Beams, 2015, 27: 071004. doi: 10.11884/HPLPB201527.071004
Citation: Qi Chao, Wei Guanghui, Pan Xiaodong, et al. Effect of variation of electromagnetic pulse repetition rate ondigital communication stations[J]. High Power Laser and Particle Beams, 2018, 30: 103207. doi: 10.11884/HPLPB201830.180112

Effect of variation of electromagnetic pulse repetition rate ondigital communication stations

doi: 10.11884/HPLPB201830.180112
  • Received Date: 2018-04-16
  • Rev Recd Date: 2018-07-05
  • Publish Date: 2018-10-15
  • In order to study the blocking effect of digital communication stations with the change of the electromagnetic pulse train repetition rate, an electromagnetic pulse injection test was performed on a digital communication station. The bit error rate (BER) of the radio stations follow the change of amplitude and repetition rate of the electromagnetic pulse train was studied. The results show that the BER of the radio station increases with the the pulse amplitude when the repetition rate is below 50 Hz. The BER no longer changes after reaching the sensitive BER. There is a linear relationship between the repetition rate of the electromagnetic pulse and the sensitive BER of the radio station. The higher the repetition rate, the higher the BER. The pulse amplitude is basically the same within the allowable experimental error when the BER reaches the sensitive BER. It can be inferred from the analysis that the blocking effect of the radio station is the accumulation of single-pulse blocking effects when the pulse repetition rate is below 414 Hz. The pulse effect time will overlap only at repetition rate over 414 Hz. And the sensitive voltage will decrease with the increases of repetition rate.
  • [1]
    刘尚合, 武占成, 张希军. 电磁环境效应及其发展趋势[J]. 国防科技, 2008, 29(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GFCK200801003.htm

    Liu Shanghe, Wu Zhancheng, Zhang Xijun. Electromagnetic environment effect and its development trends. National Defense Science and Technology, 2008, 29(1): 1-6 https://www.cnki.com.cn/Article/CJFDTOTAL-GFCK200801003.htm
    [2]
    Ianoz M. Comparison between high altitude EMP and high power electromagnetic effects on equipment and systems[C]//2007 International Symposium on Electromagnetic Compatibility. 2007: 1-5.
    [3]
    Agee F J, Baum C E, Prather W D, et al. Ultra-wideband transmitter research[J]. IEEE Trans Plasma Science, 1998, 26(3): 860-873. doi: 10.1109/27.700855
    [4]
    王韶光, 魏光辉, 陈亚洲, 等. 无线电引信的超宽谱辐照效应及其防护[J]. 强激光与粒子束, 2007, 19(11): 1873-1878. http://www.hplpb.com.cn/article/id/3381

    Wang Shaoguang, Wei Guanghui, Chen Yazhou, et al. Radiation effects of ultra-wide spectrum on radio fuze and its protection. High Power Laser and Particle Beams, 2007, 19(11): 1873-1878 http://www.hplpb.com.cn/article/id/3381
    [5]
    安霆, 刘尚合, 孙国至, 等. 某型装备的UWB电磁脉冲效应研究[J]. 高电压技术, 2008, 38(11): 2428-2432. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200811034.htm

    An Ting, Liu Shanghe, Sun Guozhi, et al. Study on the UWB electromagnetic pulse effects of a kind of equipment. High Voltage Engineering, 2008, 38(11): 2428-2432 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200811034.htm
    [6]
    谭仁杰, 周末. 圆柱腔体搭接部对UWB脉冲的屏蔽效能及耦合规律[J]. 林业机械与木工设备, 2010, 38(12): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-LJMG201012011.htm

    Tan Renjie, Zhou Mo. Shielding effectiveness and coupling of cylindrical cavity connection excited by UWB pulse. Forestry Machinery and Woodworking Equipment, 2010, 38(12): 39-43 https://www.cnki.com.cn/Article/CJFDTOTAL-LJMG201012011.htm
    [7]
    颜克文. 短波通信设备电磁防护技术研究[D]. 成都: 电子科学技术大学, 2009.

    Yan Kewen. Research on protection against electromagnetic weapon for shortwave communication equipment. Chengdu: University of Electronic Science and Technology of China, 2009
    [8]
    耿利飞, 魏光辉, 潘晓东, 等. 某型通信电台超宽带辐照效应[J]. 强激光与粒子束, 2011, 23(12): 3358-3362. http://www.hplpb.com.cn/article/id/5711

    Gen Lifei, Wei Guanghui, Pan Xiaodong, et al. UWB radiation effect of a certain type of communication station. High Power Laser and Particle Beams, 2011, 23(12): 3358-3362 http://www.hplpb.com.cn/article/id/5711
    [9]
    Lu Xinfu, Wei Guanghui, Pan Xiaodong, et al. A pulsed differential-mode current injection method for electromagnetic pulse field susceptibility assessment of antenna systems[J]. IEEE Trans Electromagnetic Compatibility, 2015, 57(6): 1435-1446.
    [10]
    GJB 8848-2016. 系统电磁环境效应试验方法[S]. 2016.

    GJB 8848-2016. System electromagnetic environmental effects test method. 2016
    [11]
    GJB 6741-2009. 数字通信干扰效果评定准则[S]. 2009.

    GJB 6741-2009. Assessment rule for effect of digital communication jamming. 2009
  • Relative Articles

    [1]Huang Xiaoxia, Zhao Bowang, Guo Huaiwen, Zhou Wei, Zhang Bo, Tian Xiaocheng, Zhang Kun. Autonomous pulse shaping method for high-power laser facility[J]. High Power Laser and Particle Beams, 2023, 35(8): 082001. doi: 10.11884/HPLPB202335.220320
    [2]Zhang Chunyao, Zhao Xiaohui, Gao Yanqi, Wang Tao, Zhang Tianxiong, Rao Daxing, Liu Dong, Cui Yong, Ji Lailin, Shi Haitao, Feng Wei, Sui Zhan. Near-infrared broadband low-temporal-coherence optical parametric amplification[J]. High Power Laser and Particle Beams, 2022, 34(3): 031012. doi: 10.11884/HPLPB202234.210267
    [3]Hou Chunyuan, Rao Daxing, Li Fujian, Zheng Quan, Gao Yanqi, Cui Yong, Zhao Xiaohui, He Ruijing, Sui Zhan, Xiang Xia. Single-shot measurement method of temporal coherence for low-coherence broadband light[J]. High Power Laser and Particle Beams, 2021, 33(7): 071005. doi: 10.11884/HPLPB202133.210027
    [4]Gao Yanqi, Ji Lailin, Cui Yong, Rao Daxing, Zhao Xiaohui, Feng Wei, Xia Lan, Liu Dong, Wang Tao, Shi Haitao, Li Fujian, Liu Jia, Du Pengyuan, Li Xiaoli, Liu Jiani, Zhang Tianxiong, Shan Chong, Ma Weixin, Sui Zhan, Fu Sizu. kJ low-coherence broadband Nd:glass laser driver facility[J]. High Power Laser and Particle Beams, 2020, 32(1): 011004. doi: 10.11884/HPLPB202032.190427
    [5]Wei Xiaofeng, Li Ping. Beam coherence and control of laser fusion driver: Retrospect and prospect[J]. High Power Laser and Particle Beams, 2020, 32(12): 121007. doi: 10.11884/HPLPB202032.200203
    [6]Yu Shijie, Long Minhui, Lu Fang, Han Xiang’e. Experiment of partially coherent and coherent light propagating through a turbulence emulator[J]. High Power Laser and Particle Beams, 2015, 27(01): 011002. doi: 10.11884/HPLPB201527.011002
    [7]Kang Dongguo, Li Meng, Gao Yaoming. Radiation pulse shaping for laser indirect-drive central ignition target[J]. High Power Laser and Particle Beams, 2013, 25(01): 57-61. doi: 10.3788/HPLPB20132501.0057
    [8]Zou Shengwu, Zhang Tongyi. Spatiotemporal shaping of terahertz pulses using conductive apertures of finite thickness[J]. High Power Laser and Particle Beams, 2013, 25(05): 1325-1331. doi: 10.3788/HPLPB20132505.1325
    [9]Zhang Hui, Hou Deting, Li Xia. Coherent control of non-resonant two-photon transition in intense laser field[J]. High Power Laser and Particle Beams, 2013, 25(11): 2861-2864. doi: 10.3788/HPLPB20132511.2861
    [10]xu yan, wan yongjian, wu yongqian. Ring source technology based on spatial coherence control[J]. High Power Laser and Particle Beams, 2011, 23(12): 18-19.
    [11]chen guangming, lin huichuan, pu jixiong. Generation of bottle beam by modulating spatial coherence of light beam[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [12]yang yuchuan, luo hui, jing feng, li fuquan, wang xiao, huang xiaojun, feng bin. Effect of temporal partial coherence of flat-topped Gauss ultrashort-pulse lasers on coherent combination[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- .
    [13]zheng huan, wang anting, xu lixin, ming hai. Frequencies of intensity fluctuation in linearly chirped Gaussian pulse stacking[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- .
    [14]wang feng-rui, zhang ying, zhu qi-hua, xie xu-dong, wang xiao, zeng xiao-ming, huang xiao-jun, sun li, guo yi, deng wu, huang zheng. Theoretical study of spectral shaping by liquid crystal spatial light modulator[J]. High Power Laser and Particle Beams, 2008, 20(09): 0- .
    [15]zhou pu, hou jing, chen zi-lun, liu ze-jin. Effect of partially coherence of high power fiber laser on coherent combination[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- .
    [16]wang shuang-yi, lu zhi-wei, lin dian-yang, wang chao, gao hong-yan, dong yong-kang. KrF laser pulse shaping by pulse stacking[J]. High Power Laser and Particle Beams, 2005, 17(11): 0- .
    [17]wan min, zhang wei, xiang ru-jian, yang rui. Influence of laser spatial coherence on illumination uniformity[J]. High Power Laser and Particle Beams, 2002, 14(01): 0- .
    [18]xie yong-jie, zhao xue-qing, wamng li-jun, liu jing-ru, yuan xiao. The experimental study of partially coherence light source produced by liquid crystal[J]. High Power Laser and Particle Beams, 2001, 13(02): 0- .
  • Cited by

    Periodical cited type(2)

    1. 张学海,戴聪明,张鑫,魏合理,朱希娟,马静. 相对湿度和粒子形态对海盐气溶胶粒子散射特性的影响. 红外与激光工程. 2019(08): 253-260 .
    2. 李树旺,邵士勇,梅海平,饶瑞中. 气溶胶吸收的光热干涉相位载波算法. 强激光与粒子束. 2016(04): 12-16 . 本站查看

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.2 %FULLTEXT: 14.2 %META: 78.8 %META: 78.8 %PDF: 7.0 %PDF: 7.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.8 %其他: 5.8 %其他: 0.1 %其他: 0.1 %China: 0.3 %China: 0.3 %United States: 0.1 %United States: 0.1 %上海: 1.2 %上海: 1.2 %东莞: 0.1 %东莞: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %伊斯兰堡: 0.4 %伊斯兰堡: 0.4 %保定: 0.3 %保定: 0.3 %北京: 2.9 %北京: 2.9 %南京: 0.1 %南京: 0.1 %南通: 0.1 %南通: 0.1 %台州: 1.6 %台州: 1.6 %合肥: 0.6 %合肥: 0.6 %周口: 0.1 %周口: 0.1 %哈密: 0.1 %哈密: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哈尔科夫: 1.5 %哈尔科夫: 1.5 %嘉兴: 0.3 %嘉兴: 0.3 %大连: 0.6 %大连: 0.6 %天津: 0.1 %天津: 0.1 %娄底: 0.1 %娄底: 0.1 %安德森: 0.4 %安德森: 0.4 %宜昌: 0.4 %宜昌: 0.4 %常州: 0.1 %常州: 0.1 %常德: 0.4 %常德: 0.4 %广州: 0.3 %广州: 0.3 %廊坊: 0.3 %廊坊: 0.3 %张家口: 1.7 %张家口: 1.7 %张家界: 0.1 %张家界: 0.1 %徐州: 0.1 %徐州: 0.1 %德阳: 0.1 %德阳: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 1.0 %成都: 1.0 %拉帕汉诺克县: 0.1 %拉帕汉诺克县: 0.1 %新加坡: 0.4 %新加坡: 0.4 %昆明: 0.3 %昆明: 0.3 %晋城: 0.1 %晋城: 0.1 %普赖恩维尔: 0.1 %普赖恩维尔: 0.1 %杭州: 1.0 %杭州: 1.0 %梧州: 0.1 %梧州: 0.1 %武汉: 0.4 %武汉: 0.4 %沃思堡: 0.9 %沃思堡: 0.9 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.3 %济南: 0.3 %淄博: 1.7 %淄博: 1.7 %深圳: 0.3 %深圳: 0.3 %温州: 0.1 %温州: 0.1 %湖州: 0.6 %湖州: 0.6 %漯河: 0.9 %漯河: 0.9 %烟台: 0.1 %烟台: 0.1 %班加罗尔: 0.1 %班加罗尔: 0.1 %石家庄: 0.7 %石家庄: 0.7 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.4 %绵阳: 0.4 %芒廷维尤: 42.2 %芒廷维尤: 42.2 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.3 %苏州: 0.3 %荆州: 0.1 %荆州: 0.1 %衢州: 0.4 %衢州: 0.4 %西宁: 13.2 %西宁: 13.2 %西安: 0.6 %西安: 0.6 %诺沃克: 4.1 %诺沃克: 4.1 %贵阳: 1.0 %贵阳: 1.0 %运城: 1.6 %运城: 1.6 %遵义: 0.4 %遵义: 0.4 %郑州: 0.6 %郑州: 0.6 %重庆: 0.3 %重庆: 0.3 %长沙: 1.6 %长沙: 1.6 %青岛: 0.7 %青岛: 0.7 %其他其他ChinaUnited States上海东莞临汾丹东伊斯兰堡保定北京南京南通台州合肥周口哈密哈尔滨哈尔科夫嘉兴大连天津娄底安德森宜昌常州常德广州廊坊张家口张家界徐州德阳惠州成都拉帕汉诺克县新加坡昆明晋城普赖恩维尔杭州梧州武汉沃思堡沈阳洛阳济南淄博深圳温州湖州漯河烟台班加罗尔石家庄秦皇岛绵阳芒廷维尤芝加哥苏州荆州衢州西宁西安诺沃克贵阳运城遵义郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views (1334) PDF downloads(90) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return