Li Qin, He Xiaozhong, Jiang Wei, et al. Physical design of calibrated device for intense pulse electron beam position monitor[J]. High Power Laser and Particle Beams, 2023, 35: 034002. doi: 10.11884/HPLPB202335.220224
Citation: Fu Yapeng, Zhang Qi, Gao Cheng, et al. Coupling test of cable on ground under condition of natural lightning[J]. High Power Laser and Particle Beams, 2018, 30: 103202. doi: 10.11884/HPLPB201830.180130

Coupling test of cable on ground under condition of natural lightning

doi: 10.11884/HPLPB201830.180130
  • Received Date: 2018-05-05
  • Rev Recd Date: 2018-07-23
  • Publish Date: 2018-10-15
  • A test system capable of simultaneously measuring the induced currents in the cable shield and inner conductor was developed to study the coupling problem of the cable on the ground under the natural lightning condition. The results show that: Waveforms of cable induced currents in the cable shield at different positions are basically the same, but the amplitudes are different which shows that the spatial distribution of the induced currents is not uniform. The time-domain waveforms and frequency spectrums of the induced currents measured in the inner conductor and cable shield are alike and the energy is concentrated between 1 kHz and 1 MHz. The induced voltage waveforms in the inner conductor of the positive and negative cloud-to-ground lightning are all single-pulse waveforms with a duration of 10-49 μs. The amplitude and their mean value of the cable induced voltages of the positive cloud-to-ground lightning are greater than the corresponding results for negative cloud-to-ground lightning, indicating that the cable coupling effect of positive cloud-to-ground lightning is greater than that of the negative cloud-to-ground lightning. The cable induced voltage amplitude and magnetic flux density of different lightning processes have small correlation and the same lightning process is basically linear. The cable induced voltage waveform duration time, the half-peak width, the range of the 10%-90% rise time and their average value of the positive cloud-to-ground lightning are all greater than those of the negative cloud-to-ground lightning.
  • [1]
    Georgiadis N, Rubinstein M, Uman M A, et al. Lightning-induced voltages at both ends of a 448-m power-distribution line[J]. IEEE Trans Electromagn Compat, 1992, 34(4): 451-460. doi: 10.1109/15.179278
    [2]
    Rubinstein M, Uman M A, Medelius P J, et al. Measurements of the voltage induced on an overhead power line 20 m from triggered lightning[J]. IEEE Trans Electromagn Compat, 1994, 36(2): 134-140. doi: 10.1109/15.293277
    [3]
    Barker P P, Short T A, Eybert-Berard A R, et al. Induced voltage measurements on an experimental distribution line during nearby rocket triggered lightning flashes[J]. IEEE Trans Power Del, 1996, 11(2): 980-995. doi: 10.1109/61.489360
    [4]
    Zhang Y, Yang S, Lu W, et al. Experiments of artificially triggered lightning and its application in Conghua, Guangdong, China[J]. Atmos Res, 2014, 135-136; 330-343. doi: 10.1016/j.atmosres.2013.02.010
    [5]
    Michishita K, Ishii M, Asakawa A, et al. Voltage induced on a test distribution line by negative winter lightning strokes to a tall structure[J]. IEEE Trans Electromagn Compat, 2003, 45(1): 135-140. doi: 10.1109/TEMC.2002.808044
    [6]
    杨静, 郄秀书, 王建国, 等. 雷电在水平导体中产生感应电压的观测及数值模拟研究[J]. 物理学报, 2008, 57(3): 1968-1975. doi: 10.3321/j.issn:1000-3290.2008.03.113

    Yang Jing, Qie Xiushu, Wang Jianguo, et al. Observation of the lightning-induced voltage in the horizontal conductor and its simulation. Acta Physica Sinica, 2008, 57(3): 1968-1975 doi: 10.3321/j.issn:1000-3290.2008.03.113
    [7]
    Cai L, Wang J, Zhou M, et al. Observation of natural lightning-induced voltage on overhead power lines[J]. IEEE Trans Power Del, 2012, 27(4): 2350-2359. doi: 10.1109/TPWRD.2012.2204441
    [8]
    Nordgard J D, Chin C L. Lightning-induced transients on buried shielded transmission lines[J]. IEEE Trans Electromagn Compat, 1979, 21 (3): 171-181.
    [9]
    Tesche F M, Kälin A W, Brändli B, et al. Estimates of lightning-induced voltage stresses within buried shielded conduits[J]. IEEE Trans Electromagn Compat, 1998, 40(4): 492-503. doi: 10.1109/15.736209
    [10]
    Paolone M, Petrache E, Rachidi F, et al. Lightning induced disturbances in buried cables—part Ⅱ: Experiment and model validation[J]. IEEE Trans Electromagn Compat, 2005, 47(3): 509-520. doi: 10.1109/TEMC.2005.853163
    [11]
    Schoene J, Uman M A, Rakov V A, et al. Experimental study of lightning-induced currents in a buried loop conductor and a grounded vertical conductor[J]. IEEE Trans Electromagn Compat, 2008, 50(1): 110-117. doi: 10.1109/TEMC.2007.911927
    [12]
    于晖, 董万胜, 陈绍东, 等. 埋地电缆雷电感应过电压观测和分析[J]. 强激光与粒子束, 2010, 22(10): 2373-2377. http://www.hplpb.com.cn/article/id/4552

    Yu Hui, Dong Wangsheng, Chen Shaodong, et al. Observation and analysis of lightning induced overvoltage on buried cables. High Power Laser and Particle Beams, 2010, 22(10): 2373-2377 http://www.hplpb.com.cn/article/id/4552
    [13]
    周颖慧. EMP对屏蔽线缆的耦合分析方法研究[D]. 南京: 解放军理工大学, 2009.

    Zhou Yinghui. Study on the coupling analysis method of EMP to shielded cables. Nanjing : PLA University of Science and Technology, 2009
    [14]
    孙征, 石立华, 张琦, 等. 无限冲击响应滤波器在屏蔽电缆耦合分析中的应用[J]. 电波科学学报, 2013, 28(6): 1122-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-DBKX201306018.htm

    Sun Zheng, Shi Lihua, Zhang Qi, et al. Application of ⅡR filter in the coupling analysis of the shielded cable. Chinese Journal of Radio Science, 2013, 28(6): 1122-1126 https://www.cnki.com.cn/Article/CJFDTOTAL-DBKX201306018.htm
    [15]
    张琦, 石立华, 周颖慧, 等. 屏蔽电缆转移阻抗时域测量方法研究[J]. 电波科学学报, 2011, 26(4): 750-757. https://www.cnki.com.cn/Article/CJFDTOTAL-DBKX201104022.htm

    Zhang Qi, Shi Lihua, Zhou Yinghui, et al. Measurement method for the surface transfer impedance in time-domain. Chinese Journal of Radio Science, 2011, 26(4): 750-757 https://www.cnki.com.cn/Article/CJFDTOTAL-DBKX201104022.htm
  • Relative Articles

    [1]Li Qin, Zhang Zhaoyi, Jiang Wei, Liu Yunlong, Wang Yongwei, Long Quanhong. Calibration technology of intense pulse electron beam position monitor[J]. High Power Laser and Particle Beams, 2024, 36(6): 064002. doi: 10.11884/HPLPB202436.240034
    [2]Wang Yuan, Jiang Xiaoguo, Chen Sifu, Shi Jinshui, Yang GuoJun, Li Jin. Theory of optical-transition radiation and its application to  pulsed electron beam diagnoses on linear induction electron accelerator[J]. High Power Laser and Particle Beams, 2020, 32(5): 054003. doi: 10.11884/HPLPB202032.190430
    [3]Yan Longgang, Deng Derong, Zhang Hao, Zhang Wei, Zhang Jidong, Yang Xingfan, Li Ming. Design, measurement and optimization of undulator for terahertz free electron laser[J]. High Power Laser and Particle Beams, 2018, 30(11): 113101. doi: 10.11884/HPLPB201830.180247
    [4]Zhang Huang, Wang Yi, Li Tiantao, Yang Zhiyong, Li Qin, Jiang Wei, Li Yuan, Huang Ziping, Chen Sifu, Shi Jinshui, Zhang Linwen, Deng Jianjun. Beam load effect on the cavity voltage waveform in linear induction accelerators[J]. High Power Laser and Particle Beams, 2016, 28(01): 015101. doi: 10.11884/HPLPB201628.015101
    [5]Yang Hanwu, Zhang Zicheng, Gao Jingming, Xun Tao. On-line compensated calibration of capacitive voltage divider used in low impedance pulse forming lines[J]. High Power Laser and Particle Beams, 2016, 28(05): 055007. doi: 10.11884/HPLPB201628.055007
    [6]Huang Ziping, Jiang Wei, Ye Yi. Reset system for multi-pulse linear induction accelerator[J]. High Power Laser and Particle Beams, 2014, 26(04): 045101. doi: 10.11884/HPLPB201426.045101
    [7]Jiang Xiaoguo, Wang Yuan, Yang Guojun, Xia Liansheng, Li Hong, Zhang Zhuo, Liao Shuqing, Shi Jinshui. Development of time-resolved optical measurement and diagnostic system for parameters of high current and pulsed electron beam[J]. High Power Laser and Particle Beams, 2013, 25(11): 2780-2784. doi: 10.3788/HPLPB20132511.2780
    [8]Jiang Wei, Lai Qinggui, Qin Ling, Zhang Xiaobo. Instrument communication and control in measurement and control system of multi-pulse and high-current linear induction accelerator[J]. High Power Laser and Particle Beams, 2013, 25(05): 1270-1274. doi: 10.3788/HPLPB20132505.1270
    [9]fang jia, sun baogen, yang yongliang, zou junying, zhou zeran, luo qing, lu ping, wang xiaohui. Calculation and calibration of eight-stripline beam energy spread monitor[J]. High Power Laser and Particle Beams, 2011, 23(12): 45-46.
    [10]yang changhong, meng lin, zhang kaizhi, zhang wenwei, liu dagang. Numerical simulation of beam focusing magnetic field in linear induction accelerator[J]. High Power Laser and Particle Beams, 2010, 22(06): 0- .
    [11]huang zi-ping, chen si-fu, deng jian-jun, ye yi. Burst double-pulse cell of LIA[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- .
    [12]wei bing, gu yuan-chao, zhou rong-guo, yang liang, wang xiong. Design, calibration and measurement of D-dot monitor for Yang accelerator water transmission line[J]. High Power Laser and Particle Beams, 2007, 19(05): 0- .
    [13]yang xing-lin, pan-jian, wang yuan, jiang wei, lai qing-gui. Design and implementation of control system for 4 MeV LIA[J]. High Power Laser and Particle Beams, 2005, 17(11): 0- .
    [14]xu tie zheng, wang hua cen, xie yu tong, zhang wen wei, . Experiment study on four button electrode used to monitor positon of high current electronbeam[J]. High Power Laser and Particle Beams, 2004, 16(01): 0- .
    [15]li xin, wang jin-sheng, ding hen-song, ye yi. Optimization design of the main switch in 12MeV linear induction accelerator[J]. High Power Laser and Particle Beams, 2004, 16(02): 0- .
    [16]zhang kai zhi, lin yu zheng, wang hua cen. Numerical simulation on beam breakup unstability of linear induction accelerator[J]. High Power Laser and Particle Beams, 2003, 15(04): 0- .
    [17]deng jian jun, chen si fu, li jing, chang li hua, yang guo jun, lin yu zheng. Time resolved energy spectrum diagnostics for 2MeV injector pulsed electron beam[J]. High Power Laser and Particle Beams, 2003, 15(07): 0- .
    [18]xie yu-tong, dai zhi-yong, han qing. Improvement on the accuracy of beam bugs in linear induction accelerator[J]. High Power Laser and Particle Beams, 2002, 14(01): 0- .
    [19]yu hai-jun, shi jin-shui, li qin, zhu da-jun, he guo-rong, ma bing, wang jin-sheng, wang li-ping1. Optimum Design for 12MeV Linear Induction Accelerator Diode[J]. High Power Laser and Particle Beams, 2001, 13(03): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.0 %FULLTEXT: 26.0 %META: 66.9 %META: 66.9 %PDF: 7.2 %PDF: 7.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.9 %其他: 4.9 %其他: 1.4 %其他: 1.4 %Seattle: 0.2 %Seattle: 0.2 %United States: 0.1 %United States: 0.1 %[]: 0.8 %[]: 0.8 %上海: 1.6 %上海: 1.6 %东莞: 0.1 %东莞: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.3 %丽水: 0.3 %佛山: 0.3 %佛山: 0.3 %保定: 0.3 %保定: 0.3 %兰州: 0.8 %兰州: 0.8 %北京: 3.3 %北京: 3.3 %南京: 0.8 %南京: 0.8 %南通: 0.1 %南通: 0.1 %台州: 0.9 %台州: 0.9 %哈尔滨: 0.1 %哈尔滨: 0.1 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 0.5 %天津: 0.5 %宜昌: 0.1 %宜昌: 0.1 %密蘇里城: 0.2 %密蘇里城: 0.2 %巴音郭楞: 0.2 %巴音郭楞: 0.2 %巴黎: 0.1 %巴黎: 0.1 %常德: 0.5 %常德: 0.5 %平朗: 0.3 %平朗: 0.3 %广州: 0.1 %广州: 0.1 %廊坊: 0.2 %廊坊: 0.2 %张家口: 0.2 %张家口: 0.2 %徐州: 0.1 %徐州: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 0.6 %成都: 0.6 %扬州: 0.1 %扬州: 0.1 %新余: 0.1 %新余: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.5 %杭州: 0.5 %武汉: 0.5 %武汉: 0.5 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.1 %济南: 0.1 %浦项: 0.5 %浦项: 0.5 %深圳: 0.6 %深圳: 0.6 %湖州: 0.2 %湖州: 0.2 %漯河: 0.9 %漯河: 0.9 %特洛伊: 0.6 %特洛伊: 0.6 %眉山: 0.1 %眉山: 0.1 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %约翰内斯堡: 1.0 %约翰内斯堡: 1.0 %纽约: 0.3 %纽约: 0.3 %绵阳: 2.2 %绵阳: 2.2 %芒廷维尤: 26.6 %芒廷维尤: 26.6 %芝加哥: 1.2 %芝加哥: 1.2 %衢州: 0.1 %衢州: 0.1 %西宁: 34.5 %西宁: 34.5 %西安: 0.5 %西安: 0.5 %诺沃克: 5.4 %诺沃克: 5.4 %贵阳: 0.7 %贵阳: 0.7 %运城: 1.2 %运城: 1.2 %遵义: 0.2 %遵义: 0.2 %郑州: 0.1 %郑州: 0.1 %重庆: 0.6 %重庆: 0.6 %长沙: 0.2 %长沙: 0.2 %香港: 0.3 %香港: 0.3 %其他其他SeattleUnited States[]上海东莞中山临汾丹东丽水佛山保定兰州北京南京南通台州哈尔滨嘉兴天津宜昌密蘇里城巴音郭楞巴黎常德平朗广州廊坊张家口徐州惠州成都扬州新余晋城普洱杭州武汉沈阳济南浦项深圳湖州漯河特洛伊眉山石家庄秦皇岛约翰内斯堡纽约绵阳芒廷维尤芝加哥衢州西宁西安诺沃克贵阳运城遵义郑州重庆长沙香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article views (1129) PDF downloads(93) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return