Volume 30 Issue 11
Nov.  2018
Turn off MathJax
Article Contents
Fan Yajie, Zhang Xijun, Sun Yongwei, et al. Surface flashover voltage characteristics of polytetrafluoroethylene under electron irradiation in vacuum[J]. High Power Laser and Particle Beams, 2018, 30: 114002. doi: 10.11884/HPLPB201830.180131
Citation: Fan Yajie, Zhang Xijun, Sun Yongwei, et al. Surface flashover voltage characteristics of polytetrafluoroethylene under electron irradiation in vacuum[J]. High Power Laser and Particle Beams, 2018, 30: 114002. doi: 10.11884/HPLPB201830.180131

Surface flashover voltage characteristics of polytetrafluoroethylene under electron irradiation in vacuum

doi: 10.11884/HPLPB201830.180131
  • Received Date: 2018-05-07
  • Rev Recd Date: 2018-09-12
  • Publish Date: 2018-11-15
  • Surface discharge effect of spacecraft insulating material in space irradiation environment is one of the main factors that threaten spacecraft safety. To investigate the pattern and influencing factors of the electrostatic discharge of polytetrafluoroethylene (PTFE) in complex ionization environment, the flashover voltage of PTFE under high voltage direct current (DC) in high vacuum and during low energy electron irradiation were experimentally obtained, the trap density before and after irradiation was tested by isothermal surface potential decay, and the influencing factors of flashover voltage were analyzed. The results show that the surface flashover voltage of PTFE under the irradiation with electron energy of 19~25keV is higher than that under no irradiation. Higher electron energy leads to smaller positive charge density on surface of PTFE and larger trap density, decreasing deformity of surface electric field, increasing the flashover voltage finally. On the condition that electron energy remains the same, the flashover voltage of PTFE would be lower with the increasing electron beam density, number of initial electrons and number of secondary electrons.
  • loading
  • [1]
    Silverman E. Spacecraft environmental effects on spacecraft: LEO materials Selection Guide[R]. NASA-CR-4661-PT-1996.
    [2]
    张振军, 苗军, 王学强, 等. 改性聚酰亚胺的真空直流沿面闪络特性[J]. 西安交通大学学报, 2013, 47(4): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201304009.htm

    Zhang Zhenjun, Miao Jun, Wang Xueqiang, et al. Surface flashover characteristics of modified polyimide under DC voltage in vacuum. Journal of Xi'an Jiaotong University, 2013, 47(4): 14-19 https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201304009.htm
    [3]
    郑晓泉, 王立, 秦小刚. 空间环境下介质材料的可靠性与寿命的地面评价方法[J]. 绝缘材料, 2006, 39(2): 24-25. doi: 10.3969/j.issn.1009-9239.2006.02.008

    Zheng Xiaoquan, Wang Li, Qin Xiaogang. Study on evaluation method of dielectric reliability and working life in space environment. Insulation Materials, 2006, 39 (2): 24-25 doi: 10.3969/j.issn.1009-9239.2006.02.008
    [4]
    李盛涛, 李国倡. 空间介质充放电研究现状及展望[J]. 科学通报, 2017, 62(10): 990-993. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201710005.htm

    Li Shengtao, Li Guochang. Dielectric charging research status and prospect. Chinese Science Bulletin, 2017, 62(10): 990-993 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201710005.htm
    [5]
    张振军, 苗军, 王学强, 等. 真空、直流电压的电子辐照环境中聚酰亚胺材料的沿面闪络特性[J]. 高电压技术, 2014, 40(1): 117-123. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201401017.htm

    Zhang Zhenjun, Miao Jun, Wang Xueqiang, et al. Surface flashover characteristics of polyimide materials during electron beam irradiation under DC voltage in vacuum. High Voltage Engineering, 2014, 40 (1): 117-123 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201401017.htm
    [6]
    高巍, 孙广生, 严萍. 高真空条件下绝缘闪络机理研究的描述[J]. 高电压技术, 2005, 31(1): 1-4. doi: 10.3969/j.issn.1003-6520.2005.01.001

    Gao Wei, Sun Guangsheng, Yan Ping. Review of flashover mechanism in high vacuum. High Voltage Engineering, 2005, 31(1): 1-4 doi: 10.3969/j.issn.1003-6520.2005.01.001
    [7]
    张冠军, 赵文彬, 郑楠, 等. 真空中固体绝缘沿面闪络现象的研究进展[J]. 高电压技术, 2007, 33(7): 30-35. doi: 10.3969/j.issn.1003-6520.2007.07.007

    Zhang Guanjun, Zhao Wenbin, Zheng Nan, et al. Research progress on surface flashover phenomena across solid insulation in vacuum. High Voltage Engineering, 2007, 33(7): 30-35 doi: 10.3969/j.issn.1003-6520.2007.07.007
    [8]
    Simmons J G, Tam M C. Theory of isothermal currents and direct determination of trap parameters in semiconductors and insulators containing arbitrary trap distributions[J]. Physical Review B, 1973, 7(8): 3706-3713. doi: 10.1103/PhysRevB.7.3706
    [9]
    李枕, 黄印, 闵道敏, 等. 环氧基碳纳米管纳米电介质的直流真空沿面闪络特性[J]. 高电压技术, 2017, 43(9): 2859-2861. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201709012.htm

    Li Zhen, Huang Yin, Min Daomin, et al. Surface flashover characteristic of EP/MWCNTS in vacuum under DC voltage. High Voltage Engineering, 2017, 43 (9): 3706-3713 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201709012.htm
    [10]
    Li J Y, Zhou F S, Min D M, et al. The energy distribution of trapped charges in polymers based on isothermal surface potential decay model[J]. IEEE Trans Dielectrics and Electrical Insulation, 2015, 22(3): 1723-1732. doi: 10.1109/TDEI.2015.7116370
    [11]
    欧阳本红, 赵健康, 周福生, 等. 基于等温表面电位衰减法的直流电缆用低密度聚乙烯和交联聚乙烯陷阱电荷分布特性[J]. 高电压技术, 2015, 41(8): 2689-2696. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201508023.htm

    Ouyang Benhong, Zhao Jiankang, Zhou Fusheng, et al. Characteristics of trapped charge distribution in LDPE and XLPE used in DC cables based on isothermal surface potential decay method. High Voltage Engineering, 2015, 41(8) 2689-2696 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201508023.htm
    [12]
    Anderson R A, Brainard J P. Mechanism of pulsed surface flashover involving electron-stimulated desorption[J]. Journal of Applied Physics, 1980, 51(3): 1414-1421. doi: 10.1063/1.327839
    [13]
    Panitz J A. Preflashover phenomena and electron-stimulated desorption in high electric fields[J]. Journal of Applied Physics, 1974, 45(3): 1112-1114.
    [14]
    Pillai A S, Hackam R. Surface flashover of solid dielectric in vacuum[J]. Journal of Applied Physics, 1982, 53(4): 2983-2987.
    [15]
    Sun Zelai. Research on flashover mechanism of secondary electron emission under nanosecond pulse in vacuum. Beijing: North China Electric Power University, 2016: 61-63
    [16]
    全荣辉, 韩建伟, 黄建国, 等. 电介质材料辐射感应电导率的模型研究[J]. 物理学报, 2007, 56(11): 6642-6644. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200711081.htm

    Quan Ronghui, Han Jianwei, Huang Jianguo, et al. Modeling analysis of radiation induced conductivity in electrical insulator. Acta Physica Sinica, 2007, 56 (11): 6642-6644 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200711081.htm
    [17]
    Du Boxue, Li Jin, Du Qiang. Surface charge and flashover voltage of EVA/CB nanocomposite under mechanical stresses[J]. IEEE Trans Dielectrics and Electrical Insulation, 2016, 23(6): 3734-3741.
    [18]
    Li Feng, Jiang Jihao, Xu Le, et al. Investigation on surface flashover characteristics of the insulator with different transformer oil coating conditions in vacuum[C]//27th International Symposium on Discharges and Electrical Insulation in Vacuum. 2016: 1-4.
    [19]
    Her E K, KoT J, Shin B, et al. Superhydrophobic transparent surface of nanostructured poly(methyl methacrylate) enhanced by a hydrolysis reaction[J]. Plasma Process Polym, 2013(10): 481-488.
    [20]
    Tataroglu A, Altindal S. The effect of frequency and r-irradiation on the dielectric properties of MIS type Schottky diodes[J]. Nuclear Instruments and Methods in Physics Research, 2007, 254: 113-117.
    [21]
    Gross B, Sessler G M, West J E. Charge dynamics for electron-irradiated polymer-foil electrets[J]. Journal of Applied Physics, 1974, 45(7): 113-117.
    [22]
    SorensenJ. Engineering tools for internal charging[R]. DERA/CIS/CIS2 CR000277, 2000.
    [23]
    Gary E W. Vacuum surface flashover: A high-pressure phenomenon[J]. Journal of Applied Physics, 1985, 58(1): 132-141.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (1284) PDF downloads(107) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return