Li Jianzhi, Sun Baochen. Theory analysis of novel fiber Bragg grating temperature compensated method based on thermal stress[J]. High Power Laser and Particle Beams, 2015, 27: 024115. doi: 10.11884/HPLPB201527.024115
Citation: Qiao Jiang, Du Xiaoyan, Wei Peipei. Real-time simplified correction method for tropospheric refraction error[J]. High Power Laser and Particle Beams, 2018, 30: 103205. doi: 10.11884/HPLPB201830.180146

Real-time simplified correction method for tropospheric refraction error

doi: 10.11884/HPLPB201830.180146
  • Received Date: 2018-05-18
  • Rev Recd Date: 2018-07-19
  • Publish Date: 2018-10-15
  • Tropospheric refraction error is one of the main factors that affect the accuracy of radar measurement and positioning system. In view of the poor real-time and low resolution of the Vienna Mapping Function 1 (VMF1) in refraction error correction, this paper introduces the GPT2w model that can provide some relevant parameters with a resolution of 1°×1°, and build a new model that named as SG-VMF1 by combining with the Saastamoinen model. Based on the new model and the calculation principle of the mapping function method, the tropospheric refraction error values of 4 International GNSS Service (IGS) stations at different elevation angles are estimated. The results demonstrate that when taking the results calculated by ray-tracing method based on IGS meteorological data as a reference, the RMS with the result of SG-VMF1 model and relevant calculation theory can reach 0.4 m when the elevation angle is 6°, and the RMS can reach 0.1 m when the elevation angle is greater than 30°. The new calculation method is feasible and effective, and with real-time and higher resolution.
  • [1]
    王红光, 吴振森, 朱庆林. 大气折射对雷达低仰角跟踪误差的影响分析[J]. 电子与信息学报, 2012, 34(8): 1893-1896. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201208017.htm

    Wang Hongguang, Wu Zhensen, Zhu Qinglin. Influence analysis of atmospheric refraction on low-angle radar tracing errors. Journal of Electronics & Information Technology, 2012, 34(8): 1893-1896 https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201208017.htm
    [2]
    陈祥明. 大气折射率剖面模型与电波折射误差修正方法研究[D]. 青岛: 中国海洋大学, 2008: 34-36.

    Chen Xiangming. Studies on atmospheric refractivity profile model and radio wave refractive error correction method. Qingdao: Ocean University of China, 2008: 34-36
    [3]
    谢劭峰, 张朋飞, 王新桥, 等. 动态映射函数对GPS基线解算质量的影响[J]. 大地测量与地球动力学, 2017, 37(2): 192-195. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201702017.htm

    Xie Shao-feng, Zhang Pengfei, Wang Xinqiao, et al. Influence of dynamic mapping functions on GPS baseline quality. Journal of Geodesy and Geodynamics, 2017, 37(2): 192-195 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201702017.htm
    [4]
    Niell A E. Global mapping functions for the atmosphere delay at radio wavelengths[J]. Journal of Geophysical Research Solid Earth, 1996, 101(B2): 3227-3246. doi: 10.1029/95JB03048
    [5]
    Boehm J, Schuh H. Vienna mapping functions in VLBI analysis[J]. Geophysical Research Letters, 2004, 31: L01603.
    [6]
    Böhm J, Niell A, Tregoning P, et al. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data[J]. Geophysical Research Letters, 2006, 33: L07304.
    [7]
    姚宜斌, 徐星宇, 胡羽丰. GGOS对流层延迟产品精度分析及在PPP中的应用[J]. 测绘学报, 2017, 46(3): 278-287. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201703003.htm

    Yao Yibin, Xu Xingyu, Hu Yufeng. Precision analysis of GGOS tropospheric delay product and its application in PPP. Acta Geodaetica et Cartographica Sinica, 2017, 46(3): 278-287 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201703003.htm
    [8]
    刘宗强, 党亚民, 杨强, 等. 对流层映射函数对陆态网解算精度的影响[J]. 测绘通报, 2017(5) : 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201705002.htm

    Liu Zongqiang, Dang Yamin, Yang Qiang, et al. Influence of the tropospheric mapping function on the accuracy of CMONOC solution. Journal of Geodesy and Geodynamics, 2017(5): 6-10 https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201705002.htm
    [9]
    Schindelegger M, Pain G, Weber R, et al. Development of an improved empirical model for slant delays in the troposphere (GPT2w)[J]. GPS Solutions, 2015, 19(3): 433-441. doi: 10.1007/s10291-014-0403-7
    [10]
    施宏凯, 何秀凤, 王俊杰. 全球气压气温模型在中国地区的精度分析[J]. 大地测量与地球动力学, 2017, 37(8): 841-844. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201708014.htm

    Shi Hongkai, He Xiufeng, Wang Junjie. Accuracy analyses of global pressure and temperature model in China. Journal of Geodesy and Geodynamics, 2017, 37(8): 841-844 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201708014.htm
    [11]
    刘继业, 陈西宏, 刘赞. 对流层散射双向时间比对中对流层斜延迟估计[J]. 电子与信息学报, 2018, 38(3): 171-176. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201803011.htm

    Liu Jiye, Chen Xihong, Liu Zan. Real-time estimation of tropospheric slant delay in two-way troposphere time transfer. Journal of Electronics & Information Technology, 2018, 38(3): 171-176 https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201803011.htm
    [12]
    Saastamoinen J. Atmospheric correction for troposphere and stratosphere in radio ranging of satellites[J]. Use of Artificial Satellites for Geodesy, 1972, 15(6): 247-251.
    [13]
    Hopfield H S. Two-quartic tropospheric refractivity profile for correcting satellite data[J]. Journal of Geophysical Research, 1969, 74(18): 4487-4499.
  • Relative Articles

    [1]Huang Jinglin, Zhou Minjie, Le Wei, Chen Guo, Ni Shuang, Niu Gao, Li Zeyu, Zhao Zongqing, He Zhibing, Li Bo, Zhao Songnan, Zhang Baohan, Du Kai. Detection of spike protein of SARS-CoV-2 by surface enhanced Raman spectroscopy[J]. High Power Laser and Particle Beams, 2020, 32(6): 069001. doi: 10.11884/HPLPB202032.200145
    [2]Li Mingbin, Wu Xuezhong, Dong Peitao, Chen Jian. Fabrication of gold flower-like arrays based on nanosphere lithography for Raman enhancement[J]. High Power Laser and Particle Beams, 2015, 27(02): 024153. doi: 10.11884/HPLPB201527.024153
    [3]Wang Yanbin. Feasibility study of ICF ignition by swift heavy ions irradiation[J]. High Power Laser and Particle Beams, 2013, 25(01): 67-70. doi: 10.3788/HPLPB20132501.0067
    [4]Lu Jianxin, Lan Xiaofei, Huang Yongsheng, Wang Leijian, Xi Xiaofeng, Tang Xiuzhang, Yang Dawei. Energy spectra of protons driven by ultra-short laser interaction with thin gold foils[J]. High Power Laser and Particle Beams, 2012, 24(08): 1879-1881. doi: 10.3788/HPLPB20122408.1879
    [5]huang yongjun, wen guangjun, li tianqian, xie kang. Effect of negative permeability on negative permittivity in electromagnetic metamaterials[J]. High Power Laser and Particle Beams, 2010, 22(10): 0- .
    [6]hu zhang-hu, wang qiong, song yuan-hong, wang you-nian. Polarization effect and energy loss in interactions of charged particles with magnetized plasmas[J]. High Power Laser and Particle Beams, 2008, 20(11): 0- .
    [7]guo bin, tang yong-jian, luo jiang-shan, cheng jian-ping. In-situ growth of gold nanostructure on glass substrates by light irradiation and their spectral properties[J]. High Power Laser and Particle Beams, 2008, 20(12): 0- .
    [8]guo bin, tang yong-jian, cheng jian-ping, luo jiang-shan. Preparation of mesoporous SiO2 nanorods and anchoring of Au nanoparticles on their surface[J]. High Power Laser and Particle Beams, 2008, 20(05): 0- .
    [9]cai da-feng, gu yu-qiu, zheng zhi-jian, zhou wei-min, jiao chun-ye, wen tian-shu, chunyu shu-tai. Fast electron energy distribution in femtosecond laser plasma interactions[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- .
    [10]lin xiao-dong, wu zheng-mao, xia guang-qiong, chen jian-guo. Numerical research of interactions between Gaussian-shaped spatial solitons[J]. High Power Laser and Particle Beams, 2006, 18(03): 0- .
    [11]ma yan-yun, chang wen-wei, huang wei, zhuo hong-bing, yin yan. Local oscillating electron heating mechanism during laser plasma interaction[J]. High Power Laser and Particle Beams, 2005, 17(01): 0- .
    [12]yuan zhong-cai, shi jia-ming, wang jia-chun. Experimental studies of the interaction of microwaves with mixture burning plasmas in the atmosphere[J]. High Power Laser and Particle Beams, 2005, 17(05): 0- .
    [13]zheng li-yi, pan xu-dong, chen xing-wu, song hai-feng. Interacting multiple model algorithm in target tracking[J]. High Power Laser and Particle Beams, 2005, 17(09): 0- .
    [14]wang guang-chang, zheng zhi-jian, yang xiang-dong, gu yu-qiu, liu hong-jie, wen tian-shu, ge fang-fang, jiao chun-ye, zhou wei-min, zhang shuang-gen, wang xiang-xian. Measurement of transition radiation in femtosecond laser-solid target interaction[J]. High Power Laser and Particle Beams, 2005, 17(06): 0- .
    [15]jiao chun-ye, gu yu-qiu, zhang bao-han, zheng zhi-jian, yang xiang-dong, cai da-feng, zhou wei-min, wen tian-shu, wang guang-chang, chen hao. Measurement of spontaneous magnetic field in the interactions of femtosecond laser with solid targets[J]. High Power Laser and Particle Beams, 2004, 16(05): 0- .
    [16]yin yan, chang wen-wei, ma yan-yun, guo shao-feng, xu han. Energetic ions generation in the interaction between ultrashort ultraintense laser pulse and solid target[J]. High Power Laser and Particle Beams, 2004, 16(06): 0- .
    [17]zhou wei-min, gu yu-qiu, ding yong-kun, zheng zhi-jian, cai da-feng, chunyu shu-tai, wen tian-shu, chen hao, jiao chun-ye, ge fang-fang, wang guang-chang, you yong-lu, he ying-ling, . Measurement of proton jet in the interaction of ultra-short ultra-intense laser with Cu foil target[J]. High Power Laser and Particle Beams, 2004, 16(11): 0- .
    [18]ma li-ke, lu qi-sheng, zhao guo-min, jiang hou-man. Geometrical aspects of laser heating the flying cylinder[J]. High Power Laser and Particle Beams, 2004, 16(12): 0- .
    [19]he xu zhao, yi shi he. Interaction of power laser beam with supersonic free shear layer[J]. High Power Laser and Particle Beams, 2003, 15(03): 0- .
    [20]peng hui-min, he bin, zheng wu-di, yu chnn-fu. Residual epectron energy in light element gases produced by linear polarized high intense laser[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- .
  • Cited by

    Periodical cited type(2)

    1. 姜恒,张哲,江申,董妥. 表面增强拉曼光谱在呼吸道病毒检测中的研究进展. 检验医学与临床. 2023(14): 2096-2099 .
    2. 鲁佳佳,杨举,古捷,苏丽娇,陶欣,张郡童,陈艳,杨丽娟. 胺基化柱芳烃修饰的金纳米粒子及其催化活性分析. 分析化学. 2022(12): 1832-1844 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 28.1 %FULLTEXT: 28.1 %META: 68.8 %META: 68.8 %PDF: 3.1 %PDF: 3.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.6 %其他: 3.6 %其他: 0.5 %其他: 0.5 %China: 0.9 %China: 0.9 %College Station: 0.2 %College Station: 0.2 %India: 0.2 %India: 0.2 %Korea Republic of: 0.1 %Korea Republic of: 0.1 %Latvia: 0.2 %Latvia: 0.2 %Poland: 0.1 %Poland: 0.1 %Taiwan, China: 0.2 %Taiwan, China: 0.2 %United States: 0.9 %United States: 0.9 %[]: 0.9 %[]: 0.9 %上海: 1.5 %上海: 1.5 %东京: 0.3 %东京: 0.3 %中卫: 0.1 %中卫: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.2 %丽水: 0.2 %京都: 0.1 %京都: 0.1 %保定: 0.1 %保定: 0.1 %六安: 0.1 %六安: 0.1 %兰州: 0.1 %兰州: 0.1 %内江: 0.1 %内江: 0.1 %北京: 3.4 %北京: 3.4 %十堰: 0.1 %十堰: 0.1 %南京: 0.9 %南京: 0.9 %南平: 0.1 %南平: 0.1 %南昌: 0.1 %南昌: 0.1 %厦门: 0.2 %厦门: 0.2 %台州: 1.1 %台州: 1.1 %合肥: 0.4 %合肥: 0.4 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %四平: 0.2 %四平: 0.2 %夏延: 0.1 %夏延: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.2 %天津: 0.2 %太原: 0.2 %太原: 0.2 %威海: 0.1 %威海: 0.1 %孝感: 0.1 %孝感: 0.1 %孟买: 0.2 %孟买: 0.2 %宁波: 0.1 %宁波: 0.1 %宣城: 0.1 %宣城: 0.1 %常德: 0.1 %常德: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.3 %广州: 0.3 %廊坊: 0.1 %廊坊: 0.1 %延边朝鲜族自治州: 0.1 %延边朝鲜族自治州: 0.1 %张家口: 0.4 %张家口: 0.4 %徐州: 0.2 %徐州: 0.2 %成都: 1.0 %成都: 1.0 %扬州: 0.2 %扬州: 0.2 %无锡: 0.1 %无锡: 0.1 %旧金山: 0.1 %旧金山: 0.1 %昆明: 0.3 %昆明: 0.3 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 2.2 %杭州: 2.2 %柳州: 0.2 %柳州: 0.2 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 0.1 %洛阳: 0.1 %海口: 0.1 %海口: 0.1 %深圳: 0.6 %深圳: 0.6 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 1.1 %湖州: 1.1 %漯河: 0.2 %漯河: 0.2 %烟台: 0.1 %烟台: 0.1 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 1.3 %绵阳: 1.3 %芒廷维尤: 25.1 %芒廷维尤: 25.1 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.3 %苏州: 0.3 %衢州: 0.9 %衢州: 0.9 %西宁: 41.4 %西宁: 41.4 %西安: 0.2 %西安: 0.2 %西雅图: 0.1 %西雅图: 0.1 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.4 %贵阳: 0.4 %运城: 1.0 %运城: 1.0 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.5 %郑州: 0.5 %重庆: 0.2 %重庆: 0.2 %金华: 0.3 %金华: 0.3 %银川: 0.1 %银川: 0.1 %长春: 0.3 %长春: 0.3 %长沙: 0.2 %长沙: 0.2 %长治: 0.3 %长治: 0.3 %阳泉: 0.1 %阳泉: 0.1 %鞍山: 0.1 %鞍山: 0.1 %韩国大田: 0.2 %韩国大田: 0.2 %首尔: 0.2 %首尔: 0.2 %黑河: 0.1 %黑河: 0.1 %其他其他ChinaCollege StationIndiaKorea Republic ofLatviaPolandTaiwan, ChinaUnited States[]上海东京中卫中山临汾丹东丽水京都保定六安兰州内江北京十堰南京南平南昌厦门台州合肥哈尔滨哥伦布嘉兴四平夏延大连天津太原威海孝感孟买宁波宣城常德平顶山广州廊坊延边朝鲜族自治州张家口徐州成都扬州无锡旧金山昆明晋城普洱朝阳杭州柳州武汉沈阳洛阳海口深圳温州渭南湖州漯河烟台盐城石家庄福州秦皇岛纽约绍兴绵阳芒廷维尤芝加哥苏州衢州西宁西安西雅图诺沃克贵阳运城连云港邯郸郑州重庆金华银川长春长沙长治阳泉鞍山韩国大田首尔黑河

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article views (1144) PDF downloads(93) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return