Volume 30 Issue 10
Oct.  2018
Turn off MathJax
Article Contents
Xiao Yujie, Lin Fumin. 0.3 THz TM10, 1, 0 mode coaxial coupled cavity chain[J]. High Power Laser and Particle Beams, 2018, 30: 103101. doi: 10.11884/HPLPB201830.180153
Citation: Xiao Yujie, Lin Fumin. 0.3 THz TM10, 1, 0 mode coaxial coupled cavity chain[J]. High Power Laser and Particle Beams, 2018, 30: 103101. doi: 10.11884/HPLPB201830.180153

0.3 THz TM10, 1, 0 mode coaxial coupled cavity chain

doi: 10.11884/HPLPB201830.180153
  • Received Date: 2018-05-01
  • Rev Recd Date: 2018-07-11
  • Publish Date: 2018-10-15
  • In this paper, the eigen equation is utilized to study the high-order mode coaxial resonant cavity operating in the terahertz (THz) band, the cavity's resonant frequencies of TMm, 1, 0 mode, TMm, 2, 0 mode and TMm, 1, 1 mode associating with the geometric parameters are discussed, and the evidence for selecting the operating mode is presented. On this foundation, a new type of 0.3 THz TM10, 1, 0 mode coaxial coupled cavity chain is proposed, analyzed by equivalent circuit and simulated by CST-MWS simulation software. Its properties of cold cavity such as dispersion characteristic, characteristic impedance and electric field pattern are presented. In addition, the effect of the geometric parameters on the dispersion characteristic and the characteristic impedance is analyzed and summarized emphatically. The results of the study indicate that, TM10, 1, 0 mode is a reasonable operating mode for the THz high-order mode coaxial coupled cavity chain. The 0.3 THz TM10, 1, 0 mode coaxial coupled cavity chain operating in the 2π cavity mode has a large characteristic impedance, but the frequency spacing between the modes is small, so it can be applied to a narrow-band terahertz extended interaction device. Increasing the angle of the coupling slot is the best way to increase the mode spacing.
  • loading
  • [1]
    Liu Wenxin, Zhao Chao, Li Ke, et al. Two-section folded-waveguide slow-wave structure for terahertz extended interaction oscillator[J]. IEEE Trans Electron Devices, 2014, 61(3): 902-908. doi: 10.1109/TED.2013.2297343
    [2]
    Zhang Kaichun, Wu Zhenhua, Liu Shenggang. Study of a rectangular coupled cavity extended interaction oscillator in sub-terahertz waves[J]. Chinese Physics B, 2008, 17(9): 3402-3406. doi: 10.1088/1674-1056/17/9/042
    [3]
    Pasour J, Wright E, Nguyen K T, et al. Demonstration of a multikilowatt, solenoidally focused sheet beam amplifier at 94 GHz[J]. IEEE Trans Electron Devices, 2014, 61(6): 1630-1636. doi: 10.1109/TED.2013.2295771
    [4]
    Horoyski P, Berry D, Steer B. A 2 GHz bandwidth, high power W-band extended interaction klystron[C]//IEEE International Vacuum Electronics Conference, 2007: 151-152.
    [5]
    Roitman A, Berry D, Steer B. State-of-the-art W-band extended interaction klystron for the CloudSat program[J]. IEEE Trans Electron Devices, 2005, 52(5): 895-898. doi: 10.1109/TED.2005.845799
    [6]
    Nguyen K T, Pershing D, Wright E L, et al. Sheet-beam 90 GHz and 220 GHz extend-interaction-klystron designs[C]//IEEE International Vacuum Electronics Conference. 2007: 193-194.
    [7]
    丁耀根, 阮存军, 沈斌, 等. X波段同轴腔多注速调管的研究[J]. 电子学报, 2006, 34(s1): 2337-2341. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU2006S1000.htm

    Ding Yaogen, Ruan Cunjun, Shen Bin, et al. Study of a X-band coaxial cavity multi beam klystron. Acta Electronica Sinica, 2006, 34(s1): 2337-2341 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU2006S1000.htm
    [8]
    董玉和, 丁耀根, 肖刘. 同轴谐振腔高阶横磁模式参数的研究[J]. 物理学报, 2005, 54(12): 5629-5636. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200512022.htm

    Dong Yuhe, Ding Yaogen, Xiao Liu. Research on parameters of higher-order transverse magnetic modes in cylindrical coaxial cavity resonator. Acta Physica Sinica, 2005, 54(12): 5629-5636 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200512022.htm
    [9]
    Christie V L, Kumar L, Balakrishnan N. Improved equivalent circuit model of practical coupled-cavity slow-wave structures for TWTs[J]. Microwave & Optical Technology Letters, 2002, 35(4): 322-326.
    [10]
    Curnow H J. A general equivalent circuit for coupled-cavity slow-wave structures[J]. IEEE Trans Microwave Theory & Techniques, 1965, 13(5): 671-675.
    [11]
    Kantrowitz F, Tammaru I. Three-dimensional simulations of frequency-phase measurements of arbitrary coupled-cavity RF circuits[J]. IEEE Trans Electron Devices, 2002, 35(11): 2018-2026.
    [12]
    Lin Fumin, Li Xiaopeng. Monotron oscillation in double-gap coupling output cavities of multiple-beam klystrons[J]. IEEE Trans Electron Devices, 2014, 61(4): 1186-1192. doi: 10.1109/TED.2014.2303133
    [13]
    Lin Fumin, Liu Haixu. Design formulae of unsymmetrical double-gap output cavities of klystrons[J]. International Journal of Electronics, 2011, 98(5): 617-630. doi: 10.1080/00207217.2010.547809
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article views (1086) PDF downloads(92) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return