Citation: | Duan Xinhui, Jiang Ping, Wang Bingshu. Three-dimensional boiling water reactor core transient simulation based on discontinuity factor[J]. High Power Laser and Particle Beams, 2018, 30: 126003. doi: 10.11884/HPLPB201830.180178 |
[1] |
郑友琦, Lee Deokjung. 基于非线性迭代的压水堆瞬态计算程序开发[J]. 强激光与粒子束, 2017, 29: 036001. doi: 10.11884/HPLPB201729.160297
Zheng Youqi, Lee Deokjung. Nodal code development for pressurized water reactor transient analysis based on non-linear iteration method. 2017, 29: 036001 doi: 10.11884/HPLPB201729.160297
|
[2] |
Janosy J S, Kereszturi A, Hazi G, et al. Real-time 3D simulation of a pressurized water nuclear reactor[C]//International Conference on Computer Modelling and Simulation. 2010: 414-419.
|
[3] |
Georgieva E, Dinkov Y, Ivanov K, et al. Benchmarking the NEM real-time core model for VVER-1000 simulator application: Asymmetric core[C]//ASME 24th International Conference on Nuclear Engineering. 2016.
|
[4] |
Masashi T, Tatsuya I, Moore B. Development of kinetics model for BWR core simulator AETNA[J]. Journal of Nuclear Science & Technology, 2003, 40(4): 201-212.
|
[5] |
Smith K S. Spatial homogenization methods for light water reactor analysis[D]. Massachusetts: Massachusetts Institute of Technology, 1980: 12-90.
|
[6] |
Tatsuya I, Munenari Y. Advanced nodal methods of the few-group BWR core simulator NEREUS[J]. Journal of Nuclear Science & Technology, 1999, 36(11): 996-1008.
|
[7] |
郭炯, 李富. 不连续因子计算强吸收体区域的改进[J]. 原子能科学技术, 2013, 47(s1): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2013S1009.htm
Guo Jiong, Li Fu. Improvement of discontinuous factor for strong absorber region. Atomic Energy Science and Technology, 2013, 47(s1): 33-37 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2013S1009.htm
|
[8] |
吕栋, 俞陆林, 韩宇, 等. 处理轴向三维非均匀效应的单组件均匀化模型[J]. 核动力工程, 2014(s2): 140-142. (Lü https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG2014S2038.htm
Dong, Yu Lulin, Han Yu, et al. Single assembly pin-by-pin homogenization model for handling axial 3D heterogeneity effect. Nuclear Power Engineering, 2014(s2): 140-142 https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG2014S2038.htm
|
[9] |
Bernal A, Roman J E, Miró R, et al. Assembly discontinuity factors for the neutron diffusion equation discretized with the finite volume method. Application to BWR[J]. Annals of Nuclear Energy, 2016, 97: 76-85. doi: 10.1016/j.anucene.2016.06.023
|
[10] |
Vidal-Ferràndiz A, González-Pintor S, Ginestar D, et al. Use of discontinuity factors in high-order finite element methods[J]. Annals of Nuclear Energy, 2016, 87: 728-738. doi: 10.1016/j.anucene.2015.06.021
|
[11] |
Zimin V G, Ninokata H. Nodal neutron kinetics model based on nonlinear iteration procedure for LWR analysis[J]. Annals of Nuclear Energy, 1998, 25(8): 507-528. doi: 10.1016/S0306-4549(97)00078-9
|
[12] |
Singh T, Mazumdar T, Pandey P. NEMSQR: A 3-D multi group diffusion theory code based on nodal expansion method for square geometry[J]. Annals of Nuclear Energy, 2014, 64: 230-243. doi: 10.1016/j.anucene.2013.09.041
|