Citation: | Duan Xinhui, Jiang Ping, Wang Bingshu. Three-dimensional boiling water reactor core transient simulation based on discontinuity factor[J]. High Power Laser and Particle Beams, 2018, 30: 126003. doi: 10.11884/HPLPB201830.180178 |
[1] |
郑友琦, Lee Deokjung. 基于非线性迭代的压水堆瞬态计算程序开发[J]. 强激光与粒子束, 2017, 29: 036001. doi: 10.11884/HPLPB201729.160297
Zheng Youqi, Lee Deokjung. Nodal code development for pressurized water reactor transient analysis based on non-linear iteration method. 2017, 29: 036001 doi: 10.11884/HPLPB201729.160297
|
[2] |
Janosy J S, Kereszturi A, Hazi G, et al. Real-time 3D simulation of a pressurized water nuclear reactor[C]//International Conference on Computer Modelling and Simulation. 2010: 414-419.
|
[3] |
Georgieva E, Dinkov Y, Ivanov K, et al. Benchmarking the NEM real-time core model for VVER-1000 simulator application: Asymmetric core[C]//ASME 24th International Conference on Nuclear Engineering. 2016.
|
[4] |
Masashi T, Tatsuya I, Moore B. Development of kinetics model for BWR core simulator AETNA[J]. Journal of Nuclear Science & Technology, 2003, 40(4): 201-212.
|
[5] |
Smith K S. Spatial homogenization methods for light water reactor analysis[D]. Massachusetts: Massachusetts Institute of Technology, 1980: 12-90.
|
[6] |
Tatsuya I, Munenari Y. Advanced nodal methods of the few-group BWR core simulator NEREUS[J]. Journal of Nuclear Science & Technology, 1999, 36(11): 996-1008.
|
[7] |
郭炯, 李富. 不连续因子计算强吸收体区域的改进[J]. 原子能科学技术, 2013, 47(s1): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2013S1009.htm
Guo Jiong, Li Fu. Improvement of discontinuous factor for strong absorber region. Atomic Energy Science and Technology, 2013, 47(s1): 33-37 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2013S1009.htm
|
[8] |
吕栋, 俞陆林, 韩宇, 等. 处理轴向三维非均匀效应的单组件均匀化模型[J]. 核动力工程, 2014(s2): 140-142. (Lü https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG2014S2038.htm
Dong, Yu Lulin, Han Yu, et al. Single assembly pin-by-pin homogenization model for handling axial 3D heterogeneity effect. Nuclear Power Engineering, 2014(s2): 140-142 https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG2014S2038.htm
|
[9] |
Bernal A, Roman J E, Miró R, et al. Assembly discontinuity factors for the neutron diffusion equation discretized with the finite volume method. Application to BWR[J]. Annals of Nuclear Energy, 2016, 97: 76-85. doi: 10.1016/j.anucene.2016.06.023
|
[10] |
Vidal-Ferràndiz A, González-Pintor S, Ginestar D, et al. Use of discontinuity factors in high-order finite element methods[J]. Annals of Nuclear Energy, 2016, 87: 728-738. doi: 10.1016/j.anucene.2015.06.021
|
[11] |
Zimin V G, Ninokata H. Nodal neutron kinetics model based on nonlinear iteration procedure for LWR analysis[J]. Annals of Nuclear Energy, 1998, 25(8): 507-528. doi: 10.1016/S0306-4549(97)00078-9
|
[12] |
Singh T, Mazumdar T, Pandey P. NEMSQR: A 3-D multi group diffusion theory code based on nodal expansion method for square geometry[J]. Annals of Nuclear Energy, 2014, 64: 230-243. doi: 10.1016/j.anucene.2013.09.041
|
[1] | Wang Jianguo. Magnetohydrodynamic electromagnetic pulse produced by high altitude nuclear explosion[J]. High Power Laser and Particle Beams, 2024, 36(7): 073001. doi: 10.11884/HPLPB202436.240105 |
[2] | Luo Yong, Pan Qiwen, Yang Shangdong, Gu Zhixing. Preliminary study of lead-bismuth reactor system analysis code development[J]. High Power Laser and Particle Beams, 2023, 35(7): 076003. doi: 10.11884/HPLPB202335.220369 |
[3] | Li Chen, Han Ruoyu, Geng Jinyue, Yuan Wei, Cao Yuchen, Ouyang Jiting. Collection method for nanoparticles prepared by electric explosion[J]. High Power Laser and Particle Beams, 2022, 34(7): 075014. doi: 10.11884/HPLPB202234.220007 |
[4] | Liu Zhigang, Zou Xiaobing, Wang Xinxin. Lagrangian magneto-hydrodynamics simulation for underwater electrical wire explosion[J]. High Power Laser and Particle Beams, 2022, 34(7): 075002. doi: 10.11884/HPLPB202234.210433 |
[5] | Yang Hang, Liu Xiaoyong, Ma Dengqiu, Zhang Yunfei, Huang Wen, He Jianguo. Fluid dynamics analysis method for MRF of first order discontinuous optical elements[J]. High Power Laser and Particle Beams, 2019, 31(2): 022001. doi: 10.11884/HPLPB201931.180340 |
[6] | Liu Wei, Duan Xiaoxi, Yang Weiming, Liu Hao, Zhang Huan, Ye Qing, Sun Liang, Wang Zhebin, Jiang Shaoen. Molecular dynamics simulations of shock response for nano-structure foamed gold[J]. High Power Laser and Particle Beams, 2018, 30(5): 052002. doi: 10.11884/HPLPB201830.170478 |
[7] | Jiang Zhumin, Zhao Wenbo, Wang Jinyu, Sun Wei, Wang Liangzi. Progress of the CORCA-K space-time neutronics simulation code[J]. High Power Laser and Particle Beams, 2017, 29(06): 066003. doi: 10.11884/HPLPB201729.160279 |
[8] | Yan Honghao, Zhang Xiaofei, Zhao Bibo, Zhao Tiejun, Li Xiaojie. Characteristics of carbon encapsulated copper nanoparticles based on gaseous/condensed explosives detonation[J]. High Power Laser and Particle Beams, 2017, 29(08): 084101. doi: 10.11884/HPLPB201729.170074 |
[9] | Wang Chao, Li Xiaoyuan, Luo Qing, Ji Fang, Hu Surong, Wei Qilong, Zhang Yunfei, Huang Wen, Tang Guangping, He Jianguo. Dispersion of SiO2 nanoparticles in nonaqueous solvent with surfactant[J]. High Power Laser and Particle Beams, 2015, 27(02): 024155. doi: 10.11884/HPLPB201527.024155 |
[10] | Song Xiaozong, Gong Jun. Properties of ultraviolet-visible beam propagation in TiO2 nanoparticle colloid[J]. High Power Laser and Particle Beams, 2015, 27(02): 024110. doi: 10.11884/HPLPB201527.024110 |
[11] | Shen Shuangyan, Jin Xing. Numerical simulation of MHD magnetic control inlet flow field distribution[J]. High Power Laser and Particle Beams, 2015, 27(12): 124008. doi: 10.11884/HPLPB201527.124008 |
[12] | Li Xiulong, Wan Yongjian, Xu Qinglan, Zhang Yang, Luo Yinchuan, Zhang Rongzhu. Removal effects of waterjet particle impinging in ductile manner[J]. High Power Laser and Particle Beams, 2014, 26(05): 051007. doi: 10.11884/HPLPB201426.051007 |
[13] | Ma Xun, Deng Jianjun, Jiang Ping, Yuan Jianqiang, Liu Jinfeng, Liu Hongwei, Wang Lingyun, Li Hongtao. Review of flash X-ray generator applied to hydrokinetical experiments[J]. High Power Laser and Particle Beams, 2014, 26(01): 010201. doi: 10.3788/HPLPB201426.010201 |
[14] | Zhang Lei, Li Zhongguo, Nie Zhongquan, Yang Junyi, Song Yinglin. Study of excited-state absorption of C70/toluene solution using time-resolved non-degenerate pump-probe system[J]. High Power Laser and Particle Beams, 2013, 25(02): 495-499. doi: 10.3788/HPLPB20132502.0495 |
[15] | Chen Hua, Tang Wenhui, Ran Xianwen, Xu Zhihong, Zhou Hao, Xu Binbin. Three-dimensional smoothed particle hydrodynamics numerical simulation of laser irradiating columnar aluminum target[J]. High Power Laser and Particle Beams, 2012, 24(12): 2802-2806. doi: 10.3788/HPLPB20122412.2802 |
[16] | Chang Lihua, Li Zuoyou, Xiao Zhengfei, Zou Liyong, Liu Jinhong, Xiong Xueshi. 高速摄影在流体动力学不稳定性研究中的应用[J]. High Power Laser and Particle Beams, 2012, 24(06): 1479-1482. doi: 10.3788/HPLPB20122406.1479 |
[17] | gong ding, han feng, wang jian-guo. 2D hydrodynamic simulation of GaAs metal-semiconductor-field-effect-transistor[J]. High Power Laser and Particle Beams, 2006, 18(07): 0- . |
[18] | wang gang-hua, hu xi-jing, kan ming-xuan. Simulation of magnetohydrodynamics for plasma jetting on wire pinch[J]. High Power Laser and Particle Beams, 2003, 15(10): 0- . |
[19] | ning cheng, yang zhen hua, ding ning. Process of radiation magnetohydrodynamics in Al wirearray Zpinch[J]. High Power Laser and Particle Beams, 2002, 14(06): 0- . |
1. | 宋孝宗,姚统,徐国敏. TiO_2纳米颗粒胶体活化系统设计及流场仿真分析. 兰州理工大学学报. 2020(03): 75-80 . ![]() | |
2. | 徐国敏,戴旭杰,姚统,宋孝宗. 余弦光-液耦合喷嘴参数优化及射流抛光实验. 现代制造工程. 2019(05): 52-56 . ![]() | |
3. | 张航航,宋孝宗. 矩形光液耦合喷嘴的流场特性分析. 制造业自动化. 2019(12): 31-35 . ![]() |