Citation: | Duan Xinhui, Jiang Ping, Wang Bingshu. Three-dimensional boiling water reactor core transient simulation based on discontinuity factor[J]. High Power Laser and Particle Beams, 2018, 30: 126003. doi: 10.11884/HPLPB201830.180178 |
[1] |
郑友琦, Lee Deokjung. 基于非线性迭代的压水堆瞬态计算程序开发[J]. 强激光与粒子束, 2017, 29: 036001. doi: 10.11884/HPLPB201729.160297
Zheng Youqi, Lee Deokjung. Nodal code development for pressurized water reactor transient analysis based on non-linear iteration method. 2017, 29: 036001 doi: 10.11884/HPLPB201729.160297
|
[2] |
Janosy J S, Kereszturi A, Hazi G, et al. Real-time 3D simulation of a pressurized water nuclear reactor[C]//International Conference on Computer Modelling and Simulation. 2010: 414-419.
|
[3] |
Georgieva E, Dinkov Y, Ivanov K, et al. Benchmarking the NEM real-time core model for VVER-1000 simulator application: Asymmetric core[C]//ASME 24th International Conference on Nuclear Engineering. 2016.
|
[4] |
Masashi T, Tatsuya I, Moore B. Development of kinetics model for BWR core simulator AETNA[J]. Journal of Nuclear Science & Technology, 2003, 40(4): 201-212.
|
[5] |
Smith K S. Spatial homogenization methods for light water reactor analysis[D]. Massachusetts: Massachusetts Institute of Technology, 1980: 12-90.
|
[6] |
Tatsuya I, Munenari Y. Advanced nodal methods of the few-group BWR core simulator NEREUS[J]. Journal of Nuclear Science & Technology, 1999, 36(11): 996-1008.
|
[7] |
郭炯, 李富. 不连续因子计算强吸收体区域的改进[J]. 原子能科学技术, 2013, 47(s1): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2013S1009.htm
Guo Jiong, Li Fu. Improvement of discontinuous factor for strong absorber region. Atomic Energy Science and Technology, 2013, 47(s1): 33-37 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2013S1009.htm
|
[8] |
吕栋, 俞陆林, 韩宇, 等. 处理轴向三维非均匀效应的单组件均匀化模型[J]. 核动力工程, 2014(s2): 140-142. (Lü https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG2014S2038.htm
Dong, Yu Lulin, Han Yu, et al. Single assembly pin-by-pin homogenization model for handling axial 3D heterogeneity effect. Nuclear Power Engineering, 2014(s2): 140-142 https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG2014S2038.htm
|
[9] |
Bernal A, Roman J E, Miró R, et al. Assembly discontinuity factors for the neutron diffusion equation discretized with the finite volume method. Application to BWR[J]. Annals of Nuclear Energy, 2016, 97: 76-85. doi: 10.1016/j.anucene.2016.06.023
|
[10] |
Vidal-Ferràndiz A, González-Pintor S, Ginestar D, et al. Use of discontinuity factors in high-order finite element methods[J]. Annals of Nuclear Energy, 2016, 87: 728-738. doi: 10.1016/j.anucene.2015.06.021
|
[11] |
Zimin V G, Ninokata H. Nodal neutron kinetics model based on nonlinear iteration procedure for LWR analysis[J]. Annals of Nuclear Energy, 1998, 25(8): 507-528. doi: 10.1016/S0306-4549(97)00078-9
|
[12] |
Singh T, Mazumdar T, Pandey P. NEMSQR: A 3-D multi group diffusion theory code based on nodal expansion method for square geometry[J]. Annals of Nuclear Energy, 2014, 64: 230-243. doi: 10.1016/j.anucene.2013.09.041
|
[1] | Li Chao, Shi Rui, Zeng Shuxin, Xu Xinhua, Wei Yuhong, Tuo Xianguo. Lightweight neural network model for nuclide recognition based on nuclear pulse peak sequence and its FPGA acceleration method[J]. High Power Laser and Particle Beams, 2025, 37(5): 059001. doi: 10.11884/HPLPB202537.240398 |
[2] | Lü Donghui, Cheng Jie, Li Rui, Zhang Nan, Zhang Ligang. A nano-second pulse waveform reconstruction method based on neural network[J]. High Power Laser and Particle Beams, 2025, 37(1): 013002. doi: 10.11884/HPLPB202537.240342 |
[3] | Han Xiaoxiang, Li Jun, Zhang Xin, Yuan Lin, Liu Yang, Wang Boyu. Simulation research on energy distribution of light radiation from nuclear explosion[J]. High Power Laser and Particle Beams, 2024, 36(7): 076003. doi: 10.11884/HPLPB202436.230406 |
[4] | Zhou Hongbing, Zhang Haoyu, Li Min, Feng Xi, Xie Lianghua, Liu Yu, Chu Qiuhui, Yan Yuefang, Tao Rumao, Lin Honghuan, Wang Jianjun, Yan Lixin, Jing Feng. Progress in active phase control for large-scale coherent laser beam combining[J]. High Power Laser and Particle Beams, 2024, 36(6): 061001. doi: 10.11884/HPLPB202436.230426 |
[5] | Liu Luyao, Jin Xiao, Cai Jinliang. Prediction of system-level electric field radiated emission based on ANN reverse model[J]. High Power Laser and Particle Beams, 2024, 36(9): 099002. doi: 10.11884/HPLPB202436.240177 |
[6] | Chen Changjun, Tang Dan, Yang Hao, You Anqing, Pan Xudong. Research of aircraft pose estimation based on neural network feature line extraction[J]. High Power Laser and Particle Beams, 2024, 36(6): 069001. doi: 10.11884/HPLPB202436.240032 |
[7] | Zhu Wenchao, Wei Zhengyu, Xie Chunjie, Zhou Zeran, Wang Lin, Liang Yu. Development of the NFTHz accelerator beam profile measurement system[J]. High Power Laser and Particle Beams, 2024, 36(3): 034004. doi: 10.11884/HPLPB202436.230361 |
[8] | Chen Jianfei, Zhou Hongtao, Fang Meihua, Wu Kang, Song Dingyi. Geostationary orbital proton energy spectrum inversion based on machine learning[J]. High Power Laser and Particle Beams, 2023, 35(10): 104002. doi: 10.11884/HPLPB202335.230149 |
[9] | He Zhibin, Yan Liping, Zhao Xiang. Prediction of coupling cross section of hexagonal aperture array based on BP neural network[J]. High Power Laser and Particle Beams, 2022, 34(5): 053001. doi: 10.11884/HPLPB202234.210566 |
[10] | Li Dong, Sheng Liang, Li Yang, Duan Baojun. Research on algorithm for restoration of large aperture and thick pinhole imaging based on neural network[J]. High Power Laser and Particle Beams, 2022, 34(6): 064002. doi: 10.11884/HPLPB202234.210345 |
[11] | Jing Yanlong, Li Jie, Shi Wentian, Yan Xiaoling. Prediction of residual stress in selective laser melting based on neural network[J]. High Power Laser and Particle Beams, 2021, 33(10): 109001. doi: 10.11884/HPLPB202133.210223 |
[12] | Li Ruichun, Zhang Qinglei, Mi Qingru, Jiang Bocheng, Wang Kun, Li Changliang, Zhao Zhentang. Application of machine learning in orbital correction of storage ring[J]. High Power Laser and Particle Beams, 2021, 33(3): 034007. doi: 10.11884/HPLPB202133.200318 |
[13] | Wan Jinyu, Sun Zheng, Zhang Xiang, Bai Yu, Tsai Chengying, Chu Paul, Huang Senlin, Jiao Yi, Leng Yongbin, Li Biaobin, Li Jingyi, Li Nan, Lu Xiaohan, Meng Cai, Peng Yuemei, Wang Sheng, Zhang Chengyi. Machine learning applications in large particle accelerator facilities: review and prospects[J]. High Power Laser and Particle Beams, 2021, 33(9): 094001. doi: 10.11884/HPLPB202133.210199 |
[14] | Xiao Dengjie, Qiao Yusi, Chu Zhongming. Orbit correction based on machine learning[J]. High Power Laser and Particle Beams, 2021, 33(5): 054004. doi: 10.11884/HPLPB202133.200352 |
[15] | Liu Chunhua, Hou Zhipei, Wang Yuqin, Feng Zhen, Xia Fan, Huang Yuan. Artificial neural network approach applied to data processing of Thomson scattering on HL-2A[J]. High Power Laser and Particle Beams, 2019, 31(2): 022003. doi: 10.11884/HPLPB201931.180206 |
[16] | Liu Zhengyang, Yan Liping, Zhao Xiang. Evaluation of electromagnetic shielding effectiveness for loaded metallic enclosures with apertures based on machine learning[J]. High Power Laser and Particle Beams, 2019, 31(8): 083201. doi: 10.11884/HPLPB201931.190079 |
[17] | Jing Yuefeng, Liu Jun, Guan Yonghong. Inpainting method for flash radiographic anti-scatter grid image based on neural networks[J]. High Power Laser and Particle Beams, 2013, 25(03): 751-754. doi: 10.3788/HPLPB20132503.0751 |
[18] | Jing Yuefeng, Liu Jun, Guan Yonghong. Restoration method for flash radiographic images based on BP neural network[J]. High Power Laser and Particle Beams, 2012, 24(09): 2215-2219. doi: 10.3788/HPLPB20122409.2215 |
[19] | feng peng, liu siyuan, jin jing. 252Cf-source driven identification method for mass of fissile material based on autocorrelation function and stationary wavelet transform[J]. High Power Laser and Particle Beams, 2011, 23(10): 0- . |
[20] | fan bin, wan yong-jian, yang li, zeng zhi-ge, wu fan, wu shi-bin. Experimental investigation on intelligent control of active lap based on CMAC neural network[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- . |