Liang Xiaobao, Chen Liangming, Li Chao, et al. High average power spectral beam combining employing volume Bragg gratings[J]. High Power Laser and Particle Beams, 2015, 27: 071012. doi: 10.11884/HPLPB201527.071012
Citation: Geng Lidong, He Yang, Yuan Jianqiang, et al. Physical characteristics of rod-pinch diode with different concentricity[J]. High Power Laser and Particle Beams, 2018, 30: 115003. doi: 10.11884/HPLPB201830.180181

Physical characteristics of rod-pinch diode with different concentricity

doi: 10.11884/HPLPB201830.180181
  • Received Date: 2018-06-08
  • Rev Recd Date: 2018-09-03
  • Publish Date: 2018-11-15
  • The rod-pinch diode is a cylindrical pinched beam diode that generates an intense pulsed small diameter bremsstrahlung source for flash radiography. If the pulse power source has the inductive voltage adder structure in vacuum vessels, the mechanical deformation caused by its long cantilever arm and air pressure could induce visible concentricity deviation to the anode and cathode structure. To evaluate that the concentricity of the cathode and anode geometrical centers does have some effect on the physical characteristics of the rod-pinch diode and the gap closure, a positive polarity rod-pinch diode was designed to work at 1 MV, and three different values of eccentricity were used in experiment: less than 1%, 15.06%, 22.92%. The experimental results show that the diode impedance decay rate is increased with a larger concentricity deviation. This implies that the electrode plasma expansion is fast. A larger concentricity deviation results in the impedance mismatch and decrease in energy coupling efficiency between the diode and pulse power source at the magnetically limited phase.
  • [1]
    陈林, 谢卫平, 邓建军. X射线闪光照相杆箍缩二极管技术最新进展[J]. 强激光与粒子束, 2006, 18(4): 643-647. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY200604031.htm

    Chen Lin, Xie Weiping, Deng Jianjun. Development of rod-pinch diode for flash X-ray radiography. High Power Laser and Particle Beams, 2006, 18(4): 643-647 https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY200604031.htm
    [2]
    孙凤举, 邱爱慈, 杨海亮, 等. 感应电压叠加器驱动阳极杆箍缩二极管型脉冲X射线源[J]. 强激光与粒子束, 2010, 22(4): 936-940. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201004058.htm

    Sun Fengju, Qiu Aici, Yang Hailiang, et al. Pulsed X-ray source based on inductive voltage adder and rod pinch diode for radiography. High Power Laser and Particle Beams, 2010, 22(4): 936-940 https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201004058.htm
    [3]
    李进玺, 邱孟通, 程引会, 等. 四路并联二极管辐射X射线场参数计算[J]. 原子能科学技术, 2015, 49(8): 1460-1466.

    Li Jinxi, Qiu Mengtong, Cheng Yinhui, et al. Atomic Energy Science and Technology, 2015, 49(8): 1460-1466
    [4]
    Morgan D V, Macy D, Stevens G. Real time X-ray diffraction measurements of shocked polycrystalline tin and aluminum[J]. Review of Scientific Instruments, 2008, 79(11): 113904. doi: 10.1063/1.3030855
    [5]
    Bennett N, Crain M D, Droemer D W, et al. Shot reproducibility of the self-magnetic-pinch diode at 4.5 MV[J]. Physical Review Special Topics Accelerators and Beams, 2014, 17: 050401. doi: 10.1103/PhysRevSTAB.17.050401
    [6]
    Bennett N, Welch D R, Webb T J, et al. The impact of plasma dynamics on the self-magnetic-pinch diode impedance[J]. Phys Plasmas, 2015, 22: 033113. doi: 10.1063/1.4916062
    [7]
    Champeny P D A, Spence P W. Pulserad 1480—A 9 MV pulsed electron accelerator with an intensely focused beam[J]. IEEE Trans Nucl Sci, 1975, 3(22): 970-974.
    [8]
    Maenchen J E, Menge P R, Rovang D C, et al. Intense electron beams for radiography[C]//Proc 12th Int Conf High Current Electronics. 2000.
    [9]
    Swanekamp A B, Cooperstein G, Schumer J W, et al. Evaluation of self-magnetically pinched diodes up to 10MV as high resolution flash X-ray sources[J]. IEEE Trans Plasma Sci, 2004, 32(5): 2004-2016. doi: 10.1109/TPS.2004.835956
    [10]
    Birrell A R, Edwards R D, Goldsack T J, et al. New developments in paraxial radiographic diode technology for focusing intense relativistic electron beams[J]. IEEE Trans Plasma Sci, 2000, 28(5): 1660-1163. doi: 10.1109/27.901251
    [11]
    Mazarakis M G, Poukey J W, Rovang D C, et al. Pencil-like mm-size electron beams produced with linear inductive voltage adders[J]. Appl Phys Lett, 1997, 70(7): 832-834. doi: 10.1063/1.118217
    [12]
    Oliver B V, Berninger M, Cooperstein G, et al. Characterization of the rod-pinch diode X-ray source on Cygnus[C]//IEEE International Pulsed Power Conference. 2009: 11-16.
    [13]
    Mosher D, Hinshelwood D, Cooperstein G, et al. X-ray absorption and scattering issues for rod-pinch radiographic sources[C]//IEEE International Pulsed Power Conference. 2009: 28-33.
    [14]
    Commisso R, Young F, Allen R, et al. Overview of the 6-MV rod-pinch experiment on ASTERIX[C]//IEEE International Pulsed Power Conference. 2003: 479-482.
    [15]
    Leckbee J J, Oliver B V, Johnston M D, et al. Negative-polarity rod-pinch diode experiments on RITS-6[C]//IEEE International Pulsed Power Conference. 2009: 551-554.
    [16]
    Gao Yi. Qiu Aici. Zhang Zhong, et al. Research on pinching characteristics of electron beams emitted from different cathode surfaces of a rod-pinch diode[J]. Phys Plasmas, 2010, 17: 073108. doi: 10.1063/1.3455536
    [17]
    高屹, 邱爱慈, 吕敏, 等. Rod-pinch二极管箍缩特性的数值模拟[J]. 核技术, 2010, 33(4): 936-940. https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201008005.htm

    Gao Yi, Qiu Aici, Lü Min, et al. Numerical simulations of beam-pinching characteristics in a rod-pinch diode. Nuclear Techniques, 2010, 33(4): 936-940 https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201008005.htm
    [18]
    王宇, 李洪涛, 王文斗, 等. 1.2 MV"天蝎"X光机杆箍缩二极管性能模拟[J]. 强激光与粒子束, 2015, 27: 095005. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201509043.htm

    Wang Yu, Li Hongtao, Wang Wendou, et al. Simulation study on performances of rod-pinch diode on 1.2 MV X-ray generator Scorpio. High Power Laser and Particle Beams, 2015, 27: 095005 https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201509043.htm
    [19]
    Cooperstein G, Boller J, Commisso R, et al. Theoretical modeling and experimental characterization of a rod-pinch diode[J]. Phys Plasmas, 2001, 8(10): 4618-4636. doi: 10.1063/1.1403016
    [20]
    Swanekamp S B, Commisso R J, Cooperstein G, et al. Particle-in-cell simulations of high-power cylindrical electron beam diodes[J]. Phys Plasmas, 2000, 7(12): 5214-5222. doi: 10.1063/1.1320468
  • Relative Articles

    [1]Wang Hanbin, Yang Yifeng, Yuan Zhijun, Xian Yuqiao, Liu Meizhong, Wu Wenjie, Li Binglin, He Bing, Zhou Jun. Research progress on fiber laser spectral beam combining system and grating thermal analysis[J]. High Power Laser and Particle Beams, 2020, 32(12): 121002. doi: 10.11884/HPLPB202032.200240
    [2]Duan Jiazhu, Zhao Xiangjie, Hu Qiqi, Wu Fan, Luo Yongquan, Zhang Dayong. Volume Bragg grating filters and its spectral imaging application[J]. High Power Laser and Particle Beams, 2018, 30(7): 079001. doi: 10.11884/HPLPB201830.180023
    [3]Ji Xiang, Zhou Pu, Wang Xiaolin, Lu Qisheng, Zhao Yijun. Self-organized coherent combination of multichannel fiber lasers based on power coupler[J]. High Power Laser and Particle Beams, 2013, 25(03): 607-610. doi: 10.3788/HPLPB20132503.0607
    [4]Xiang Rujian, He Zhongwu, Xu Honglai, Luo Zhongxiang, Du Yinglei, Lu Fei, Hu Hao, Zhou Wenchao. Closed-loop beam quality control for MOPA solid slab laser[J]. High Power Laser and Particle Beams, 2013, 25(02): 358-362. doi: 10.3788/HPLPB20132502.0358
    [5]Jiang Maohua, Su Yi. Beamqualityevaluationofcoherentlycombinedlaserbeams[J]. High Power Laser and Particle Beams, 2013, 25(02): 367-370. doi: 10.3788/HPLPB20132502.0367
    [6]Li Zhiyong, Tan Rongqing, Xu Cheng, Li Lin, Liu Shiming, Zhao Zhilong, Huang Wei. Gratings' rotation angle tolerance for diode lasers with external cavity formed by volume Bragg grating[J]. High Power Laser and Particle Beams, 2013, 25(02): 310-314. doi: 10.3788/HPLPB20132502.0310
    [7]Li Zhiyong, Tan Rongqing, Xu Cheng, Li Lin. Theoretical study on feedback characteristics of double volume Bragg gratings[J]. High Power Laser and Particle Beams, 2013, 25(07): 1643-1647. doi: 10.3788/HPLPB20132507.1643
    [8]ye zhengyu, song haiping, wang long, wang taotao, yu yanming, wang zhiyong, jiang yijian, . Measurement of far-field beam quality parameters of high power laser[J]. High Power Laser and Particle Beams, 2011, 23(01): 0- .
    [9]zhan shengbao, zhao shanghong, ni shouchun, wang yuanyi, shi lei, zhang di. Design of spectral beam combining based on reflecting volume Bragg grating[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- .
    [10]yin suqin, zhang bin. Deformation of volume Bragg gratings affecting M2-factor of Gaussian beams[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- .
    [11]zhan shengbao, zhao shanghong, ma lihua, wu zhuoliang, chu xingchun. Experimental study on spectral beam combining for two fiber lasers in external cavity[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [12]zhang xue, li qiang, liu bo, ma jianjun. In-phase mode selection of high-power diode laser array by VBG external cavity[J]. High Power Laser and Particle Beams, 2009, 21(12): 0- .
    [13]jiang dong-bin, xu mei-jian, hu dong-xia, duan wen-tao, jiang xin-ying, yu hai-wu. Improvement of beam quality of heat capacity laser with a cube corner array[J]. High Power Laser and Particle Beams, 2008, 20(08): 0- .
    [14]chen jia-yuan, yu wen-feng, yang feng, wu si-ming, zuo dou-luo, cheng zu-hai. Beam quality of unstable resonator of TEA CO2 coaxial output laser with vortex tube cooling system[J]. High Power Laser and Particle Beams, 2007, 19(07): 0- .
    [15]liu bo, zhang xue, zhao peng-fei, li qiang. Improving beam quality of diode laser array by wavelength beam combining[J]. High Power Laser and Particle Beams, 2007, 19(12): 0- .
    [16]zhao peng-fei, liu bo, li qiang, zhang xue, zuo tie-chuan. Improvement on spectrum of high power diode laser array[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- .
    [17]liu shun-fa, jin gang, liu jian, chen hong-bin, ma zhen-zhou. Effect of thermal characteristics in laser transmitting channel on far-field beam quality[J]. High Power Laser and Particle Beams, 2004, 16(06): 0- .
    [18]an jian-zhu, li you-kuan, du xiang-wan. Influence of laser windows thermal lensing effect on beam quality[J]. High Power Laser and Particle Beams, 2004, 16(04): 0- .
    [19]ding ying-chun, lü zhi-wei, he wei-ming. Study of beam combination by stimulated Brillouin scattering[J]. High Power Laser and Particle Beams, 2002, 14(03): 0- .
  • Cited by

    Periodical cited type(8)

    1. 周军,何兵,漆云凤,杨依枫,沈辉,孟俊清. 高功率光纤激光技术. 中国激光. 2024(11): 363-386 .
    2. 王汉斌,杨依枫,袁志军,咸昱桥,刘美忠,邬文杰,李炳霖,何兵,周军. 光纤激光光谱合束及光栅热效应研究进展. 强激光与粒子束. 2020(12): 29-48 . 本站查看
    3. 姜曼,马鹏飞,粟荣涛,李灿,吴坚,马阎星,周朴. 激光光谱合成技术研究进展与展望(特邀). 红外与激光工程. 2020(12): 172-189 .
    4. 柏刚,杨依枫,晋云霞,何兵,周军. 光谱合成激光光束特性的研究进展. 激光与光电子学进展. 2019(04): 49-62 .
    5. 马毅,颜宏,孙殷宏,彭万敬,李建民,王树峰,李腾龙,王岩山,唐淳,张凯. 基于双光栅的光纤激光光谱合成关键技术研究进展(特邀). 红外与激光工程. 2018(01): 32-45 .
    6. 周泰斗,梁小宝,赵磊,王琳,李超,罗韵,王建军,景峰. 体布拉格光栅色散对衍射光束质量的影响. 中国激光. 2017(02): 200-206 .
    7. 郑也,杨依枫,赵翔,公维超,柏刚,张璟璞,刘恺,陈晓龙,赵纯,漆云凤,晋云霞,何兵,周军. 高功率光纤激光光谱合成技术的研究进展. 中国激光. 2017(02): 35-50 .
    8. 马毅,颜宏,彭万敬,王小军,田飞,孙殷宏,赵磊,王树峰,李腾龙,梁小宝,王岩山,冉欢欢,柯伟伟,冯昱骏,唐淳,张凯. 基于多路窄线宽光纤激光的9.6kW共孔径光谱合成光源. 中国激光. 2016(09): 61-67 .

    Other cited types(11)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.7 %FULLTEXT: 18.7 %META: 77.9 %META: 77.9 %PDF: 3.4 %PDF: 3.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.6 %其他: 2.6 %China: 0.4 %China: 0.4 %India: 0.1 %India: 0.1 %United States: 0.1 %United States: 0.1 %[]: 0.3 %[]: 0.3 %上海: 2.1 %上海: 2.1 %东莞: 0.1 %东莞: 0.1 %中山: 0.1 %中山: 0.1 %伦敦: 0.2 %伦敦: 0.2 %北京: 17.7 %北京: 17.7 %北海: 0.1 %北海: 0.1 %十堰: 0.1 %十堰: 0.1 %台州: 0.3 %台州: 0.3 %合肥: 0.7 %合肥: 0.7 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %大连: 0.9 %大连: 0.9 %天津: 0.1 %天津: 0.1 %太原: 0.3 %太原: 0.3 %孝感: 0.3 %孝感: 0.3 %宣城: 0.1 %宣城: 0.1 %崇左: 0.1 %崇左: 0.1 %广州: 0.5 %广州: 0.5 %张家口: 0.5 %张家口: 0.5 %张家界: 0.1 %张家界: 0.1 %徐州: 0.1 %徐州: 0.1 %怀化: 0.2 %怀化: 0.2 %成都: 0.6 %成都: 0.6 %扬州: 0.1 %扬州: 0.1 %新乡: 0.3 %新乡: 0.3 %昆明: 0.1 %昆明: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.0 %杭州: 1.0 %枣庄: 0.2 %枣庄: 0.2 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 0.4 %深圳: 0.4 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %漯河: 0.6 %漯河: 0.6 %潍坊: 0.6 %潍坊: 0.6 %玉林: 0.2 %玉林: 0.2 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 13.7 %芒廷维尤: 13.7 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.3 %苏州: 0.3 %衡水: 0.4 %衡水: 0.4 %西宁: 47.0 %西宁: 47.0 %西安: 0.1 %西安: 0.1 %贵港: 0.1 %贵港: 0.1 %运城: 0.1 %运城: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 2.1 %郑州: 2.1 %重庆: 0.1 %重庆: 0.1 %长沙: 1.0 %长沙: 1.0 %阿坝: 0.1 %阿坝: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %其他ChinaIndiaUnited States[]上海东莞中山伦敦北京北海十堰台州合肥呼和浩特哈尔滨哥伦布大连天津太原孝感宣城崇左广州张家口张家界徐州怀化成都扬州新乡昆明普洱杭州枣庄桃园武汉沈阳济南深圳温州湖州漯河潍坊玉林石家庄福州秦皇岛绵阳芒廷维尤芝加哥苏州衡水西宁西安贵港运城邯郸郑州重庆长沙阿坝香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article views (1253) PDF downloads(73) Cited by(19)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return