Wang Xinhua, Pei Yuyang, Yang Jian. Development and application of temperature-dependent thermal neutron scattering data of light water for compensated neutron logging[J]. High Power Laser and Particle Beams, 2015, 27: 074003. doi: 10.11884/HPLPB201527.074003
Citation: Li Hui, Liu Jiangfan, Jiao Zihan, et al. Propagation characteristics of electromagnetic waves in magnetized stratified plasma[J]. High Power Laser and Particle Beams, 2018, 30: 113202. doi: 10.11884/HPLPB201830.180203

Propagation characteristics of electromagnetic waves in magnetized stratified plasma

doi: 10.11884/HPLPB201830.180203
  • Received Date: 2018-07-27
  • Rev Recd Date: 2018-09-28
  • Publish Date: 2018-11-15
  • The influence of magnetized stratified plasma sheath on the propagation characteristics of oblique electromagnetic waves is analyzed by the hybrid matrix method. The variation of transmission coefficient of electromagnetic wave with frequency under magnetic field and the polarization characteristics of electromagnetic wave with different incident angles under magnetic field are calculated respectively. Taking the GPS navigation right hand circularly polarized wave as an example, the influence of magnetic field and electron density on the right-hand circular polarization(RCP) electromagnetic wave is studied. The results show that the magnetic field can move the stop-band of the right-handed circular polarization wave towards the high frequency direction in the plasma. In addition, the magnetic field can improve the polarization characteristic of the circular polarization wave at oblique incidence to some extent, which is beneficial to the reception of the GPS signal.
  • [1]
    吕殿君, 王小辉, 詹景坤, 等. 飞行器通信黑障的原理与消除方法[J]. 电子测试, 2016(15): 33-35, 84. https://www.cnki.com.cn/Article/CJFDTOTAL-WDZC201615017.htm

    Lü Dianjun, Wang Xiaohui, Zhan Jingkun, et al. The principle of the aerocraft communication blackout and method of elimination. Electronic Test, 2016(15): 33-35, 84 https://www.cnki.com.cn/Article/CJFDTOTAL-WDZC201615017.htm
    [2]
    王柏懿. 再入等离子鞘的电波传播特性[J]. 宇航学报, 1982, 3(2): 81-101. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB198202008.htm

    Wang Boyi. Propagation properties of reentry plasma sheath for electromagnetic wave. Journal of Astronautics, 1982, 3(2): 81-101 https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB198202008.htm
    [3]
    Liu Jiangfan, Xi Xiaoli, Wan Guobin, et al. Simulation of electromagnetic wave propagation through plasma sheath using the moving-window finite-difference time-domain method[J]. IEEE Transaction on Plasma Science, 2011, 39(3): 852-855. doi: 10.1109/TPS.2010.2098890
    [4]
    赵汉章, 吴是静, 董乃涵. 不均匀等离子体鞘套中电磁波的传播[J]. 地球物理学报, 1983, 26(1): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX198301001.htm

    Zhao Hanzhang, Wu Shijing, Dong Naihan. On the propagation of electromagnetic wave in an inhomogeneous plasma sheath. Chinese Journal of Geophysics, 1983, 26(1): 9-16 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX198301001.htm
    [5]
    Rosen G. Method for the removal of free electrons in a plasma[J]. Phys Fluids, 1962, 5(6): 737-738. doi: 10.1063/1.1706691
    [6]
    Sullivan L J. The early history of reentry physics research at Lincoln Laboratory[J]. The Lincoln Laboratory Journal, 1991, 4(2): 113-132.
    [7]
    Thoma C, Rose D V, Miller C L, et al. Electromagnetic wave propagation through an overdense magnetized collisional plasma layer[J]. Appl Phys, 2009, 106(4): 1825.
    [8]
    李江挺, 郭立新, 方全杰, 等. 等离子鞘套中的电波传播问题研究[J]. 微波学报, 2010, 60(s1): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB2010S1006.htm

    Li Jiangting, Guo Lixin, Fang Quanjie, et al. Study of the propagation of electromagnetic waves in plasma sheath. Journal of Microwaves, 2010, 60(s1): 11-14 https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB2010S1006.htm
    [9]
    Zhou Hui, Li Xiaoping, Liu Yanming, et al. Effects of nonuniform magnetic field on the "magnetic window" in blackout mitigation[J]. IEEE Transactions on Plasma Science, 2017, 45(1): 15-23.
    [10]
    Bai Bowen, Li Xiaoping, Liu Yanming, et al. Effects of reentry plasma sheath on the polarization properties of obliquely incident EM waves[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 3365-3372.
    [11]
    Ning J, Tan E L. Simple and stable analysis of multilayered anisotropic materials for design of absorbers and shields[J]. Materials & Design, 2009, 30(6): 2061-2066.
    [12]
    Berreman D W. Optics in stratified and anisotropic layered media: 4×4 matrix formulation[J]. J Opt Soc Am, 1972, 62(4): 502-510.
    [13]
    郑宏兴, 葛德彪. 广义传播矩阵法分析分层各向异性材料对电磁波的反射和透射[J]. 物理学报, 2000, 49(9): 1702-1705. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200009009.htm

    Zheng Hongxing, Ge Debiao. Electromagnetic wave reflection and transmission of anisotropic layered media by generalized propagation matrix method. Acta Physica Sinica, 2000, 49(9): 1702-1705 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200009009.htm
    [14]
    Rawhouser R. Overview of the AF avionics laboratory reentry electromagnetics program[C]//NASA Special Publication, 1970, SP-252: 3-17.
    [15]
    Bakanis C A. Advanced engineering electromagnetics[M]. USA: John Wiley & Sons, 2013.
  • Relative Articles

    [1]Huang Ruixian, Xi Chuanyi, Han Liqi, Yu Jinqing, Yu Tongpu, Yan Xueqing. Current situation and development trend analysis of femtosecond laser Betatron radiation source[J]. High Power Laser and Particle Beams, 2023, 35(1): 012009. doi: 10.11884/HPLPB202335.220229
    [2]Wang Yancheng, Cao Zongwei, Sun Xiangyang, Luo Wen. Study of photo-transmutation induced by laser wakefield accelerated electrons[J]. High Power Laser and Particle Beams, 2023, 35(9): 091006. doi: 10.11884/HPLPB202335.230079
    [3]Peng Ziyang, Cao Zhengxuan, Gao Ying, Chen Shiyou, Zhao Jiarui, Ma Wenjun. Application of liquid film targets in laser-driven radiation sources and laser ion acceleration[J]. High Power Laser and Particle Beams, 2022, 34(8): 081003. doi: 10.11884/HPLPB202234.220107
    [4]Liu Qinghua, Li Jing, Shan Lijun, Xiao Dexin, Pan Qing, Liu Yu, Wang Hanbin, Hu Dongcai, Zhang Peng, Li Shoutao, Wang Jianxin, Zhang Demin, Yan Longgang, Zhang Xiaoli, Gan Kongyin, Zhang Chengxin, Li Peng, Shen Xuming, Bo Wei, Chen Yunbin, Li Xiaohui, Wang Shuaihua, Yu Yong, Chen Hao, Hu Xiutai, Ma Guowu, Zhou Kui, Zhou Zheng, Wang Yuan, Yang Xingfan, Wu Dai, Li Ming, Chen Menxue, Hu Jinguang, Zhao Jianheng, Fan Guobin. High-energy CT system with 10 lp/mm spatial resolution[J]. High Power Laser and Particle Beams, 2022, 34(12): 124001. doi: 10.11884/HPLPB202234.220322
    [5]Li Peng, Wang Jianxing, Xiao Dexin, Zhou Zheng, Zhou Kui, Li Shigen, Lao Chenglong, Shen Xuming, Yang Longang, Liu Yu, Liu Jie, Hu Dongcai, Wu Dai, Yang Xingfan, Li Ming. Verification experiment of micro focus X-ray source with energy 9 MeV and beam size less than 0.1 mm[J]. High Power Laser and Particle Beams, 2020, 32(5): 054001. doi: 10.11884/HPLPB202032.200086
    [6]He Hui, Yu Haijun, Wang Yi, Dai Wenhua. Design of bremsstrahlung target of 4 MeV flash X-ray machine[J]. High Power Laser and Particle Beams, 2019, 31(12): 125102. doi: 10.11884/HPLPB201931.190273
    [7]Li Qin, Wang Yi, Li Chenggang, Li Hong, Qi Shuangxi, Liu Yunlong, Cheng Jinming, Li Tiantao, Long Quanhong. High energy X-ray spot size measurement with rollbar[J]. High Power Laser and Particle Beams, 2016, 28(04): 045106. doi: 10.11884/HPLPB201628.125106
    [8]Li Ling, Gao Fuqiang, Zhou Qin, Yan Qiang, Cai Yufang. Cupping artifact correction for low-energy X-ray industrial CT images[J]. High Power Laser and Particle Beams, 2014, 26(05): 059004. doi: 10.11884/HPLPB201426.059004
    [9]Zhou Qin, Gao Fuqiang, Chen Danqing, Chen Shengfei. Design of small interval signal acquisition system for low-energy X-ray industrial CT[J]. High Power Laser and Particle Beams, 2013, 25(01): 114-118. doi: 10.3788/HPLPB20132501.0114
    [10]ou long, hu dongcai, chen hao, wang yuan, xu zhou. Design of embedded synchronization system for high energy industry CT based on FPGA[J]. High Power Laser and Particle Beams, 2011, 23(09): 0- .
    [11]li chenggang, deng jianjun, shi jinshui, li qin, jiang xiaoguo, wang yuan, zhang kaizhi, li jin, zhang linwen. Time-resolved spot size diagnosis for high-energy X-ray source[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- .
    [12]duan li-ming, liao ping, zhang ping, li sheng-e. Design of data transmission system for high-energy X-ray industrial CT[J]. High Power Laser and Particle Beams, 2008, 20(09): 0- .
    [13]duan li-ming, liao ping. Design of scanning motion control system for high-energy X-ray industrial CT[J]. High Power Laser and Particle Beams, 2008, 20(10): 0- .
    [14]hu guang-yue, liu shen-ye, zhang ji-yan, yang jia-min, ding yong-kun, hu xin, huang yi-xiang, du hua-bing, yi rong-qing, zheng jian. Emission characteristic of long laser pulse keV X-ray source[J]. High Power Laser and Particle Beams, 2007, 19(05): 0- .
    [15]hou li-fei, yi rong-qing, du hua-bing, liu shen-ye, zhu jing-tao, zhao yi-dong, cui ming-qi. Reflectivity calibration of soft X-ray multilayer mirror in Beijing Synchrotron Radiation Facility[J]. High Power Laser and Particle Beams, 2007, 19(12): 0- .
    [16]liu yuan-qiong, gao dang-zhong, liu li-xiang, luo qing, ye cheng-gang. Phase-contrast imaging with micro-focus X-ray source[J]. High Power Laser and Particle Beams, 2006, 18(12): 0- .
    [17]tian you-wei, yu wei, lu pei-xiang, he feng, ma fa-jun, xu han, qian lie-jia. Laser synchrotron radiation as attosecond X-ray source[J]. High Power Laser and Particle Beams, 2005, 17(11): 0- .
    [18]chen hao, xu zhou, jin xiao, li ming, shan li jun, lu he ping, yang xing fan, deng ren pei, zhang zhi fu, liu xi san. Spot size measurement of new type Xray source designed for high energy industrial CT[J]. High Power Laser and Particle Beams, 2004, 16(03): 0- .
    [19]guo wei, gu jia hui, cai xiang zhou, shen wen qing. Preliminary discussion of laser synchrotron source construction[J]. High Power Laser and Particle Beams, 2002, 14(05): 0- .
    [20]yang jiamin, yi rongqing, chen zhenlin, sun kexu, li chaoguang, ding yaonan, zheng zhijian, cui mingqi, zhu peiping, cui congwu. EXPERIMENTAL CALIBRATION OF RESPONSE CURVES FOR SOFT X-RAY FILM 5FW ON SYNCHROTRON RADIATION[J]. High Power Laser and Particle Beams, 1998, 10(01): 0- .
  • Cited by

    Periodical cited type(1)

    1. 童维超,蒋柏斌,吴小军,李国,黄燕华,张春雨,马小军. 基于圆弧刀补偿加工的平面调制切削技术研究. 四川大学学报(自然科学版). 2024(02): 127-132 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.1 %FULLTEXT: 24.1 %META: 69.7 %META: 69.7 %PDF: 6.2 %PDF: 6.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.8 %其他: 6.8 %其他: 0.9 %其他: 0.9 %Canton: 0.4 %Canton: 0.4 %China: 0.9 %China: 0.9 %Germany: 0.4 %Germany: 0.4 %India: 0.1 %India: 0.1 %Iran (ISLAMIC Republic Of): 0.2 %Iran (ISLAMIC Republic Of): 0.2 %Japan: 0.1 %Japan: 0.1 %Pontevedra: 0.2 %Pontevedra: 0.2 %Romania: 0.1 %Romania: 0.1 %Taoyuan District: 0.2 %Taoyuan District: 0.2 %United Kingdom: 0.8 %United Kingdom: 0.8 %United States: 0.2 %United States: 0.2 %[]: 1.2 %[]: 1.2 %三明: 0.1 %三明: 0.1 %上海: 2.0 %上海: 2.0 %东莞: 0.2 %东莞: 0.2 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %临沂: 0.1 %临沂: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.4 %丽水: 0.4 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %光州: 0.2 %光州: 0.2 %兰州: 0.2 %兰州: 0.2 %北京: 7.0 %北京: 7.0 %南京: 0.2 %南京: 0.2 %南昌: 0.8 %南昌: 0.8 %卡利亚里: 0.2 %卡利亚里: 0.2 %卡尔斯鲁厄: 0.4 %卡尔斯鲁厄: 0.4 %台州: 1.1 %台州: 1.1 %台湾省: 0.3 %台湾省: 0.3 %合肥: 0.1 %合肥: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %圣何塞: 0.2 %圣何塞: 0.2 %圣克拉拉: 0.3 %圣克拉拉: 0.3 %圣彼得堡: 0.2 %圣彼得堡: 0.2 %大连: 0.4 %大连: 0.4 %天津: 0.3 %天津: 0.3 %安顺: 0.1 %安顺: 0.1 %宣城: 0.1 %宣城: 0.1 %密蘇里城: 0.3 %密蘇里城: 0.3 %常州: 0.2 %常州: 0.2 %广州: 0.2 %广州: 0.2 %庆阳: 0.1 %庆阳: 0.1 %张家口: 0.5 %张家口: 0.5 %张掖: 0.1 %张掖: 0.1 %徐州: 0.1 %徐州: 0.1 %德黑兰: 0.2 %德黑兰: 0.2 %成都: 0.8 %成都: 0.8 %扬州: 0.1 %扬州: 0.1 %新乡: 0.1 %新乡: 0.1 %无锡: 0.2 %无锡: 0.2 %昆明: 0.1 %昆明: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.6 %杭州: 0.6 %梅州: 0.1 %梅州: 0.1 %武汉: 0.7 %武汉: 0.7 %沈阳: 0.1 %沈阳: 0.1 %泉州: 0.1 %泉州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %深圳: 0.5 %深圳: 0.5 %温州: 0.3 %温州: 0.3 %湖州: 0.9 %湖州: 0.9 %滁州: 0.1 %滁州: 0.1 %漯河: 0.6 %漯河: 0.6 %烟台: 0.1 %烟台: 0.1 %益阳: 0.1 %益阳: 0.1 %石嘴山: 0.1 %石嘴山: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %米兰: 0.2 %米兰: 0.2 %纽约: 0.1 %纽约: 0.1 %绵阳: 0.6 %绵阳: 0.6 %美国伊利诺斯芝加哥: 0.2 %美国伊利诺斯芝加哥: 0.2 %芒廷维尤: 23.3 %芒廷维尤: 23.3 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.2 %苏州: 0.2 %莫斯科: 0.4 %莫斯科: 0.4 %衡阳: 0.2 %衡阳: 0.2 %衢州: 1.0 %衢州: 1.0 %西宁: 33.2 %西宁: 33.2 %西安: 0.7 %西安: 0.7 %贵阳: 0.3 %贵阳: 0.3 %运城: 1.0 %运城: 1.0 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.0 %郑州: 1.0 %重庆: 0.8 %重庆: 0.8 %金华: 0.3 %金华: 0.3 %长春: 0.4 %长春: 0.4 %长沙: 0.7 %长沙: 0.7 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %雅安: 0.2 %雅安: 0.2 %青岛: 0.7 %青岛: 0.7 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %黔西南: 0.1 %黔西南: 0.1 %龙岩: 0.1 %龙岩: 0.1 %其他其他CantonChinaGermanyIndiaIran (ISLAMIC Republic Of)JapanPontevedraRomaniaTaoyuan DistrictUnited KingdomUnited States[]三明上海东莞中山临汾临沂丹东丽水佛山保定光州兰州北京南京南昌卡利亚里卡尔斯鲁厄台州台湾省合肥哈尔滨嘉兴圣何塞圣克拉拉圣彼得堡大连天津安顺宣城密蘇里城常州广州庆阳张家口张掖徐州德黑兰成都扬州新乡无锡昆明普洱杭州梅州武汉沈阳泉州洛阳深圳温州湖州滁州漯河烟台益阳石嘴山石家庄福州秦皇岛米兰纽约绵阳美国伊利诺斯芝加哥芒廷维尤芝加哥苏州莫斯科衡阳衢州西宁西安贵阳运城邯郸郑州重庆金华长春长沙长治阳泉雅安青岛香港特别行政区黔西南龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article views (1358) PDF downloads(105) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return