Hu Chundong, Zhang Weitang, Xu Yongjian, et al. Analysis of shine-through of EAST neutral beam[J]. High Power Laser and Particle Beams, 2015, 27: 126001. doi: 10.11884/HPLPB201527.126001
Citation: Li Zhigang, Tuo Xianguo, Shi Rui, et al. A functional model for determining body source detection efficiency under different radiation energy and line attenuation coefficients[J]. High Power Laser and Particle Beams, 2018, 30: 126002. doi: 10.11884/HPLPB201830.180218

A functional model for determining body source detection efficiency under different radiation energy and line attenuation coefficients

doi: 10.11884/HPLPB201830.180218
  • Received Date: 2018-08-14
  • Rev Recd Date: 2018-10-18
  • Publish Date: 2018-12-15
  • Efficiency calibration is one of the key problems to be solved in the activity detection of radioactive waste barrels.Based on the assumption of uniform distribution of media material and radionuclides contained in the barrel, Monte Carlo method was used to simulate line attenuation coefficients and body source detection efficiency under various energies and various sample densities.The body source detection efficiency function with linear attenuation coefficient and energy as independent variables is obtained by multivariate nonlinear fitting.And, based on the idea of shell source method, the experiment of the homogenous body source is approximately replaced by multiple point source combination measurement.Three kinds of energy ray and three kinds of density samples have been verified experimentally, and the detection efficiency is calculated respectively by the method of Monte Carlo simulation combining with numerical fitting and the method of experimental measurement.Then, the respective activity estimation results are obtained by solving the efficiency matrix equation, and, the relative error is less than 30%.The simulation results are basically consistent with the experimental result, which proves the effectiveness of the method.
  • [1]
    Parker J L. The use of calibration standards and the correction for sample self-attenuation in gamma-ray nondestructive assay[R]. LA-10045-1-33, 1986.
    [2]
    Espartero A G, Pina G, Suares J A. Development and application of a radioactivity characterization system for low-level radioactive waste[J]. Nuclear Instruments and Methods in Physics Research A, 1999, 422(1/3): 790-794.
    [3]
    Chhavi A, Sanhita P, Goswami A, et al. A simple numerical method for gamma-ray self-attenuation correction for samples of common geometries[J]. Nuclear Instruments and Methods in Physics Research A, 2008, 597(2/3): 198-202.
    [4]
    刘宇琦, 庹先国, 石睿, 等. 分层γ扫描技术中HPGe探测器几何因子加权刻度方法[J]. 强激光与粒子束, 2017, 29: 066002. doi: 10.11884/HPLPB201729.160561

    Liu Yuqi, Tuo Xianguo, Shi Rui, et al. Efficiency calibration method for HPGe detector in segmented gamma scanning based on weighted geometric factor. High Power Laser and Particle Beams, 2017, 29: 066002 doi: 10.11884/HPLPB201729.160561
    [5]
    Thomas K, Christoph G, Eric M, et al. A numerical method to improve the reconstruction of the activity content in homogeneous radioactive waste drums[J]. Nuclear Instruments and Methods in Physics Research A, 2013, 701: 262-267. doi: 10.1016/j.nima.2012.11.022
    [6]
    程毅梅, 刘大鸣, 何丽霞, 等. 用于放射性废物测量的新型分段γ扫描算法研究[J]. 原子能科学技术, 2016, 50(1): 164-170. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201601026.htm

    Cheng Yimei, Liu Daming, He Lixia, et al. Study on new segmented gamma scanning algorithm for radioactive waste measurement. Atomic Energy Science and Technology, 2016, 50(1): 164-170 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201601026.htm
    [7]
    Parnis J M, Oldham K B. Beyond the Beer-Lambert law: The dependence of absorbance on time in photochemistry[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 267: 6-10. doi: 10.1016/j.jphotochem.2013.06.006
    [8]
    李志刚, 庹先国, 石睿, 等. 核废物桶分层γ扫描点源衰减校正方法[J]. 强激光与粒子束, 2017, 29: 116005. doi: 10.11884/HPLPB201729.170244

    Li Zhigang, Tuo Xianguo, Shi Rui, et al. Point source attenuation correction method for nuclear waste drum inspection by segmented gamma scanning. High Power Laser and Particle Beams, 2017, 29: 116005 doi: 10.11884/HPLPB201729.170244
    [9]
    苏容波. SGS技术在核设施退役桶装废物测量中的简化与应用[D]. 兰州: 兰州大学, 2013.

    Su Rongbo. Predigestion and application of SGS technology in measurement about barreled radioactive waste from decommissioning of nuclear facility. Lanzhou: Lanzhou University, 2013
    [10]
    周志波. 桶装核废物快速检测方法研究[D]. 北京: 中国原子能科学研究院, 2007.

    Zhou Zhibo. Research on the analysis method for the fast measurement of nuclear waste with γ spectrum. Beijing: China Institute of Atomic Energy, 2007
    [11]
    何丽霞. 探测器表征技术在核保障非破坏性伽马检测系统中的应用研究[D]. 北京: 中国原子能科学研究院, 2009.

    He Lixia. Application of detector characterization technology in nondestructive gamma detection system of nuclear security. Beijing: China Institute of Atomic Energy, 2009
    [12]
    郜强, 王仲奇, 王奕博, 等. 分层γ扫描层间串扰影响研究[J]. 原子能科学技术, 2011, 45(2): 211-216. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201102015.htm

    Gao Qiang, Wang Zhongqi, Wang Yibo, et al. Wedge disturbing effect of segmented gamma scanning. Atomic Energy Science and Technology, 2011, 45(2): 211-216 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201102015.htm
    [13]
    唐碧华, 白立新, 王辉东. HPGe γ谱仪体源探测效率与射线能量和体源密度的关系[J]. 核电子学与探测技术, 2006, 26(5): 683-686. doi: 10.3969/j.issn.0258-0934.2006.05.037

    Tang Bihua, Bai Lixin, Wang Huidong. Relationship of the HPGe γ spectrometer detection efficiency of body source with radial energy and density of body source. Nuclear Electronics & Detection Technology, 2006, 26(5): 683-686 doi: 10.3969/j.issn.0258-0934.2006.05.037
    [14]
    郑洪龙, 庹先国, 石睿, 等. 蒙特卡罗模拟确定γ射线衰减系数函数及参数[J]. 核技术, 2017, 40(3): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201703003.htm

    Zheng Honglong, Tuo Xianguo, Shi Rui, et al. Monte Carlo simulations of gamma ray linear attenuation coefficient function and determination of its parameters. Nuclear Techniques, 2017, 40(3): 16-22 https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201703003.htm
    [15]
    Liang J H, Jiang S H, Chou J T, et al. Parametric study of shell-source method for calibrating radwaste radioactivity detection systems[J]. Applied Radiation & Isotopes, 1998, 49(4): 361-368.
  • Relative Articles

    [1]Zhang Xiaoning, He Jialong, Zhao Wei, Qin Zhen, Shi JinShui. Design of electron gun for electron beam irradiation of vertical graphene[J]. High Power Laser and Particle Beams, 2025, 37(4): 045005. doi: 10.11884/HPLPB202537.240284
    [2]Niu Jingyang, Wang Li, Luo Yong, Jiang Wei. Thermal analysis of electron gun cathode for gyrotron travelling wave tube[J]. High Power Laser and Particle Beams, 2013, 25(02): 446-450. doi: 10.3788/HPLPB20132502.0446
    [3]Wang Xiaohui, He Zhigang, Fang Jia, Sun Baogen, Jia Qika, Tang Leilei, Lu Ping, Luo Qing. Slit-based emittance measurement system for high-brightness injector at Hefei Light Source[J]. High Power Laser and Particle Beams, 2012, 24(02): 457-462. doi: 10.3788/HPLPB20122402.0457
    [4]liu lei, ruan jiufu, yang jun, lü guoqiang, deng guangsheng, he zhaochang, zhang wenbing. Thermal analysis and structural optimization of electron gun for traveling wave tube[J]. High Power Laser and Particle Beams, 2011, 23(12): 55-56.
    [5]sun qilong, wang xintao, lin guoqiang, dai zhimin, lu shanliang, yu tiemin. Electron gun based on photo-field emission of carbon nanotubes irradiated by 532 nm laser[J]. High Power Laser and Particle Beams, 2010, 22(01): 0- .
    [6]cheng cheng, cheng daoxi, zheng shuxin, duo jinsheng, . Thermal analysis of heating structure for thermionic cathode electron gun[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [7]wang chao, tang tian-tong, kang xiao-hui. Modulating properties of electrostatic immersion objective laminar flow gun[J]. High Power Laser and Particle Beams, 2008, 20(04): 0- .
    [8]zhu zi-qiu, zheng shu-xin, liao shu-qing, cheng cheng, xing qing-zi, li quan-feng. Preliminary study of ferroelectric electron gun[J]. High Power Laser and Particle Beams, 2008, 20(03): 0- .
    [9]zhao gang, tang kang-song, li shi, yin he-jun. Design of electron gun based on comparing algorithm and simplex method[J]. High Power Laser and Particle Beams, 2008, 20(04): 0- .
    [10]zou feng, xue qian-zhong, liu pu-kun. Design of large orbit gyrotron electron beam double- cusp gun[J]. High Power Laser and Particle Beams, 2007, 19(03): 0- .
    [11]liu bo, gu meng-ping, chi yun-long. Design of the BEPCII electron gun system[J]. High Power Laser and Particle Beams, 2006, 18(10): 0- .
    [12]yang yong-liang, wang jun-hua, liu zu-ping, zheng kai, wang lin, liu jian-hong, sun bao-gen, zhou ze-ran. Phase-space measurement of Hefei light source[J]. High Power Laser and Particle Beams, 2006, 18(08): 0- .
    [13]zhou zu-sheng, dong dong. Thermal deformation analysis and test of electron gun for high power klystron[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [14]liao ping, yang zhong hai, lei wen qiang, xiao li. Study on 3D MAFIA PIC simulation for microwave tube electron gun[J]. High Power Laser and Particle Beams, 2004, 16(03): 0- .
    [15]yao lie-ming, xiao li, yang zhong-hai. Thermalstress analysis of the electron gun[J]. High Power Laser and Particle Beams, 2004, 16(10): 0- .
    [16]wang hua jun, li hong-fu, shi hong, . Computer assistant design of a single anode electronic gun for gyrotron[J]. High Power Laser and Particle Beams, 2003, 15(11): 0- .
    [17]liu sheng guang, li yong gui, wang ming kai. Measurement method of time jitter between pump laser pulse and RF wave by the charge change in photoinjector[J]. High Power Laser and Particle Beams, 2002, 14(05): 0- .
    [18]huang wei-ling, li qyan-feng, zhang yun-kai. Characteristics of electron gun used in the accelerator for customs inspection systems[J]. High Power Laser and Particle Beams, 2001, 13(03): 0- .
    [19]liu guo-zhi. Electron gun with a ferroelectric material cathode[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- .
  • Cited by

    Periodical cited type(2)

    1. 杨先科,殷磊,姚达毛. EAST装置高场侧NBI束透区第一壁的设计和分析. 核聚变与等离子体物理. 2024(04): 450-455 .
    2. 於子辰,陈玉庆,许永建,陈丽萍,刘晓雪,吴征威,毛文哲. 基于二次电子发射的中性束剖面诊断系统设计. 核聚变与等离子体物理. 2023(04): 457-461 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.7 %FULLTEXT: 16.7 %META: 79.1 %META: 79.1 %PDF: 4.2 %PDF: 4.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.5 %其他: 4.5 %其他: 0.3 %其他: 0.3 %Absecon: 0.2 %Absecon: 0.2 %Canton: 0.2 %Canton: 0.2 %China: 0.7 %China: 0.7 %India: 0.2 %India: 0.2 %Iran (ISLAMIC Republic Of): 0.1 %Iran (ISLAMIC Republic Of): 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %Tiruchi: 0.1 %Tiruchi: 0.1 %United States: 0.3 %United States: 0.3 %[]: 0.4 %[]: 0.4 %三明: 0.1 %三明: 0.1 %上海: 2.2 %上海: 2.2 %东京: 0.2 %东京: 0.2 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %伊斯坦布尔: 0.2 %伊斯坦布尔: 0.2 %伯克利: 0.3 %伯克利: 0.3 %兰州: 0.5 %兰州: 0.5 %加利福尼亚: 0.2 %加利福尼亚: 0.2 %北京: 11.3 %北京: 11.3 %南京: 0.1 %南京: 0.1 %卡尼: 0.2 %卡尼: 0.2 %古吉拉特邦: 0.2 %古吉拉特邦: 0.2 %台州: 0.2 %台州: 0.2 %合肥: 0.8 %合肥: 0.8 %呼和浩特: 0.1 %呼和浩特: 0.1 %大连: 0.3 %大连: 0.3 %孟买: 0.2 %孟买: 0.2 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.2 %宣城: 0.2 %巴黎: 0.1 %巴黎: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.1 %广州: 0.1 %张家口: 0.4 %张家口: 0.4 %德黑兰: 0.2 %德黑兰: 0.2 %惠州: 0.1 %惠州: 0.1 %成都: 1.0 %成都: 1.0 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.6 %杭州: 0.6 %柏林: 0.3 %柏林: 0.3 %武汉: 0.9 %武汉: 0.9 %江原道: 0.1 %江原道: 0.1 %洛杉矶: 0.1 %洛杉矶: 0.1 %济南: 0.2 %济南: 0.2 %淄博: 0.1 %淄博: 0.1 %深圳: 0.1 %深圳: 0.1 %温哥华: 0.2 %温哥华: 0.2 %温州: 0.1 %温州: 0.1 %湖州: 0.5 %湖州: 0.5 %漯河: 0.1 %漯河: 0.1 %爱知县: 0.1 %爱知县: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.5 %福州: 0.5 %绵阳: 0.7 %绵阳: 0.7 %罗奥尔凯埃: 0.3 %罗奥尔凯埃: 0.3 %芒廷维尤: 14.1 %芒廷维尤: 14.1 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.2 %苏州: 0.2 %营口: 0.1 %营口: 0.1 %衢州: 0.5 %衢州: 0.5 %西宁: 50.5 %西宁: 50.5 %西安: 0.4 %西安: 0.4 %诺沃克: 0.1 %诺沃克: 0.1 %贵阳: 0.1 %贵阳: 0.1 %运城: 1.3 %运城: 1.3 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.3 %郑州: 0.3 %重庆: 0.3 %重庆: 0.3 %长春: 0.1 %长春: 0.1 %长治: 0.2 %长治: 0.2 %黄石: 0.1 %黄石: 0.1 %其他其他AbseconCantonChinaIndiaIran (ISLAMIC Republic Of)Taiwan, ChinaTiruchiUnited States[]三明上海东京中山临汾丹东伊斯坦布尔伯克利兰州加利福尼亚北京南京卡尼古吉拉特邦台州合肥呼和浩特大连孟买宝鸡宣城巴黎平顶山广州张家口德黑兰惠州成都无锡昆明晋城普洱杭州柏林武汉江原道洛杉矶济南淄博深圳温哥华温州湖州漯河爱知县石家庄福州绵阳罗奥尔凯埃芒廷维尤芝加哥苏州营口衢州西宁西安诺沃克贵阳运城邯郸郑州重庆长春长治黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article views (1473) PDF downloads(64) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return