Citation: | Qin Mimi, Hou Shenyong. Corrugated coaxial gyrotron with tilted inner conductor[J]. High Power Laser and Particle Beams, 2018, 30: 113003. doi: 10.11884/HPLPB201830.180246 |
[1] |
Nusinovich G S, Thumm M K A, Petelin M I. The gyrotron at 50: Historical overview[J]. J Infrared Milli Terahz Waves, 2014, 35: 325-381. doi: 10.1007/s10762-014-0050-7
|
[2] |
Iatrou C T, Kern S, Pavelyev A B. Coaxial cavities with corrugated inner conductor for gyrotrons[J]. IEEE Trans Microwave Theory Tech, 1996, 44(1): 56-64. doi: 10.1109/22.481385
|
[3] |
Thumm M. Progress on gyrotrons for ITER and future thermonuclear fusion reactors[J]. IEEE Trans Plasma Sci, 2011, 39(4): 971-979. doi: 10.1109/TPS.2010.2095042
|
[4] |
Piosczyk B, Arnold A, Budig H, et al. A 2-MW, 170-GHz coaxial cavity gyrotron[J]. IEEE Trans Plasma Sci, 2004, 32(3): 413-417.
|
[5] |
Chien-Lun Hung, Nai-How Cheng, Stable 0.3-THz gyrotron backward-wave oscillator with a tapered coaxial interaction waveguide, IEEE Trans Electron Devices, 2014, 61(6): 1812-1817. doi: 10.1109/TED.2013.2296299
|
[6] |
Qiu C R, Zhang S C, Zhang H B, et al. Nonlinear characteristics of a coaxial-waveguide cyclotron auto resonance maser (CARM) amplifier[J]. J Phys D: Appl Phys, 2006, 39(1): 424-428.
|
[7] |
Yuvaraj S, Kartikeyan M V, Thumm M K. RF behavior of a 220/251.5-GHz, 2-MW, triangular corrugated coaxial cavity gyrotron[J]. IEEE Trans Electron Devices, 2017, 64(10): 4287-4294. doi: 10.1109/TED.2017.2743342
|
[8] |
Qin Mimi, Yang Kuo, Luo Yong, et al. The study of a coaxial gyrotrons with misaligned inner rod[J]. Vacuum, 2015, 115: 124-129. doi: 10.1016/j.vacuum.2015.02.018
|
[9] |
Qin Mimi, Luo Yong, Yang Kuo, et al. Nonlinear theory of a corrugated coaxial gyrotron with misaligned inner rod[J]. IEEE Trans Electron Devices, 2014, 61(12): 4247-4252. doi: 10.1109/TED.2014.2361634
|
[10] |
Dumbrajs O, Pavelyev A B. Insert misalignment in coaxial cavities and its influence on gyrotron operation[J]. Int J Electron, 1997, 82(3): 261-268. doi: 10.1080/002072197136084
|
[11] |
Liu D W, Yan Y, Liu S G. Characteristics analysis of a coaxial cavity with misaligned inner rod[J]. IEEE Trans Electron Devices, 2012, 59(1): 230-233. doi: 10.1109/TED.2011.2171348
|
[12] |
Liu D W, Yan Y, Liu S G. Analysis of the characteristics of a coaxial gyrotron cavity with a tilted inner rod[J]. IEEE Trans Electron Devices, 2012, 59(3): 841-845. doi: 10.1109/TED.2011.2177095
|
[13] |
Dumbrajs O, Nusinovich G S. Effect of electron beam misalignments on the gyrotron efficiency[J]. Phys Plasmas, 2014, 20: 073105.
|
[14] |
Dumbrajs O, Avramidis K A, Franck J, et al. On the dependence of the efficiency of a 240GHz high-power gyrotron on the displacement of the electron beam and on the azimuthal index[J]. Phys Plasmas, 2014, 21: 013104. doi: 10.1063/1.4862446
|
[15] |
Abramowitz M, Stegun A. Handbook of mathematical functions: With formulas, graphs, and mathematical tables[M]. New York: U S Department of Commerce, 1964.
|
[16] |
Piosczyk B, Dammertz G, Dumbrajs O, et al. 165-GHz coaxial cavity gyrotron[J]. IEEE Trans Plasma Sci, 2004, 32(3): 853-860. doi: 10.1109/TPS.2004.827593
|