Mo Jun, Feng Guoying, Liao Yu, et al. All-optical preferential absorption characteristics of graphene-coated microfiber composite waveguide[J]. High Power Laser and Particle Beams, 2018, 30: 081003. doi: 10.11884/HPLPB201830.180079
Citation: Yan Longgang, Deng Derong, Zhang Hao, et al. Design, measurement and optimization of undulator for terahertz free electron laser[J]. High Power Laser and Particle Beams, 2018, 30: 113101. doi: 10.11884/HPLPB201830.180247

Design, measurement and optimization of undulator for terahertz free electron laser

doi: 10.11884/HPLPB201830.180247
  • Received Date: 2018-09-26
  • Rev Recd Date: 2018-10-17
  • Publish Date: 2018-11-15
  • Electron trajectory center deviation and magnetic field errors of undulator have a great influence on the performances of CTFEL facility, which were limited in the range of specification requirements by preliminary design and post measurement and optimization. In the preliminary design, the global system errors were avoided as far as possible: the magnetic structure has a planar anti-symmetric structure to ensure the coincidence of electron trajectory center and undulator magnetic axis; the special design of magnetic structure end weakens the influence of gap on second integral of magnetic field at undulator exit; the beam and frame of the mechanical system have good rigidity and the control system with close-loop configure guarantees high accuracy of the gap control, all of which limit the magnetic field errors caused by the gap inconsistency. The residual global system errors and local random errors of the magnetic field were reduced in the later measurement and optimization: the longitudinal and transverse distributions of magnetic field were measured using magnetic field measurement bench and then the undulator field was shimmed and optimized by adjusting the positions of standard unit components. Finally, the electron trajectory center deviation, peak-to-peak error, phase error and good field range error meet the requirements of specification after optimization.
  • [1]
    Neil G R, Merminga L. Technical approaches for high-average-power free-electron lasers[J]. Review of Modern Physics, 2002, 74(3): 685-701. doi: 10.1103/RevModPhys.74.685
    [2]
    Jia Q K. Field integrals error of undulator[J]. Nuclear Instruments & Methods in Physics Research, 1999, 428(2): 589-592.
    [3]
    Qin B, Tan P, Yang L, et al. Design considerations of a planar undulator applied in a terahertz FEL oscillator[J]. Nuclear Inst and Methods in Physics Research A, 2013, 727(9): 90-96.
    [4]
    Walker R P. Phase errors and their effect on undulator radiation properties[J]. Physical Review Special Topics-Accelerators and Beams, 2013, 16(1): 122-130.
    [5]
    Li Y, Faatz B, Pflueger J. Undulator system tolerance analysis for the European X-ray free-electron laser[J]. Review of Modern Physics, 2008, 11(10): 320-325.
    [6]
    许州, 杨兴繁, 黎明, 等. 高平均功率太赫兹自由电子激光装置设计[J]. 太赫兹科学与电子信息学报, 2013, 11(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201301002.htm

    Xu Zhou, Yang Xingfan, Li Ming, et al. Design of a high average power terahertz-FEL facility. Journal of Terahertz Science and Electronic Information Technology, 2013, 11(1): 1-6 https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201301002.htm
    [7]
    黎明, 杨兴繁, 许州, 等. CAEP太赫兹自由电子激光首次饱和出光[J]. 强激光与粒子束, 2017, 29: 100101. doi: 10.11884/HPLPB201729.170363

    Li Ming, Yang Xingfan, Xu Zhou, et al. First lasing of CAEP THz free electron laser. High Power Laser and Particle Beams, 2017, 29: 100101 doi: 10.11884/HPLPB201729.170363
    [8]
    吴岱, 肖德鑫, 李凯, 等. 砷化镓光阴极直流高压注入器研究进展[J]. 强激光与粒子束, 2015, 27: 045101. doi: 10.11884/HPLPB201527.045101

    Wu Dai, Xiao Dexin, Li Kai, et al. Recent progress of GaAs high-voltage DC photo-injector. High Power Laser and Particle Beams, 2015, 27: 045101 doi: 10.11884/HPLPB201527.045101
    [9]
    王汉斌, 杨兴繁, 潘清, 等. 光阴极直流高压电子枪工程设计[J]. 强激光与粒子束, 2013, 25(s0): 145-148. http://www.hplpb.com.cn/article/id/7812

    Wang Hanbin, Yang Xingfan, Pan Qing, et al. Engineering design of photoemission DC high voltage electron gun. High Power Laser and Particle Beams, 2013, 25(s0): 145-148 http://www.hplpb.com.cn/article/id/7812
    [10]
    Luo X, Lao C, Zhou K, et al. Design and fabrication of the 2×4 -cell superconducting linac module for the free-electron laser[J]. Nuclear Instruments & Methods in Physics Research, 2017, 871: 30-34.
    [11]
    Vinokurov N. Free electron lasers as a high-power terahertz sources[J]. Journal of Infrared Millimeter & Terahertz Waves, 2011, 32(10): 1123-1143.
    [12]
    窦玉焕, 束小建, 邓德荣, 等. 中物院高功率THz FEL装置的理论分析和优化设计[J]. 强激光与粒子束, 2013, 25(3): 662-666. doi: 10.3788/HPLPB20132503.0662

    Dou Yuhuan, Shu Xiaojian, Deng Derong, et al. Design and simulations of CAEP high power THz FEL. High Power Laser and Particle Beams, 2013, 25(3): 662-666 doi: 10.3788/HPLPB20132503.0662
    [13]
    Jia Q K. Parameter design considerations for an oscillator IR-FEL[J]. Chinese Physics C, 2017 (1): 187-194.
    [14]
    Halbach K. Application of permanent magnets in accelerators and electron storage rings[J]. Journal of Applied Physics, 1985, 57(8): 3605-3608. doi: 10.1063/1.335021
    [15]
    Elleaume P, Onuki A H. Undulators, wigglers and their applications[M]. London: CRC Press, 2002.
    [16]
    张继东, 周巧根, 张红辉, 等. 可变椭圆极化波荡器EPU10.0的传动控制[J]. 原子能科学技术, 2006, 40(5): 602-604. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS200605020.htm

    Zhang Jidong, Zhou Qiaogen, Zhang Honghui et al. Phase driving system for variable elliptically polarized undulator EPU10.0. Atomic Energy Science and Technology, 2006, 40(5): 602-604 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS200605020.htm
    [17]
    Tanaka T, Goto S, Hara T, et al. Undulator commissioning by characterization of radiation in X-ray free electron lasers[J]. Review of Modern Physics, 2012, 15(11): 41-73.
    [18]
    Li P, Wei T, Li Y, et al. Magnetic design of an Apple-X afterburner for the SASE3 undulator of the European XFEL[J]. Nuclear Instruments & Methods in Physics Research, 2017, 870: 103-109.
    [19]
    Elleaume P, Chavanne J, Faatz B. Design considerations for a 1 Å SASE undulator[J]. Nuclear Instruments & Methods in Physics Research, 2000, 455(3): 503-523.
  • Relative Articles

    [1]Lei Cheng, Li Zhongxing, Yuan Xiandan, Wang Du, Zhao Zongqing, Liu Sheng. High-frame-rate ultrafast optical imaging with 25 frames in single shot[J]. High Power Laser and Particle Beams, 2022, 34(12): 129901. doi: 10.11884/HPLPB202234.220348
    [2]Cong Junkai, He Hengxiang, Xia Huijun, Xiao Jing, Deng Cui. Electron density measurement of laser-induced epoxy fiber reinforced polymer plasma[J]. High Power Laser and Particle Beams, 2016, 28(07): 072003. doi: 10.11884/HPLPB201628.072003
    [3]Dong Zhiwei, Zhou Qianhong, Sun Huifang, Zhang Fang, Jiang Youming, Chen Yashen. Simulation on non-linear propagation of high power microwave pulses in the atmosphere[J]. High Power Laser and Particle Beams, 2014, 26(04): 043005. doi: 10.11884/HPLPB201426.043005
    [4]Tang Enling, Zhang Qingming, Ma Yuefen, Xiang Shenghai, Zhang Wei, Yang Minghai, Li Lexin, Yu Hui. Temporal and spatial distribution of particle density in expanding plasma cloud[J]. High Power Laser and Particle Beams, 2012, 24(05): 1126-1130. doi: 10.3788/HPLPB20122405.1126
    [5]xu qifu, liu lie. Particle-in-cell simulation on plasma near the cathode of high current electron beam source[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [6]li wenxu, yan yang, fu wenjie, li xiaoyun, wu jianqiang. Experimental study of miniature hollow cathode plasma electron gun[J]. High Power Laser and Particle Beams, 2010, 22(01): 0- .
    [7]dai yang, wu weidong, gao yingxue, ge fangfang, huang jing, wang haiping, ma tingting. Langmuir probe diagnosis of hydrogen plasma induced by helicon-wave under low pressure[J]. High Power Laser and Particle Beams, 2010, 22(06): 0- .
    [8]yuan yu-fei, meng lin, zhou chang-geng, hu yong-hong, zhang qin-long. Plasma density measurement of electron cyclotron resonance ion source for neutron generator[J]. High Power Laser and Particle Beams, 2007, 19(12): 0- .
    [9]tang ying, yi ai-ping, liu jing-ru, qian hang, huang xin, yu li, su jian-cang, ding zhen-jie, ding yong-zhong, yu jian-guo. Experimental study on generation of large area uniform electron beam[J]. High Power Laser and Particle Beams, 2007, 19(06): 0- .
    [10]cai da-feng, gu yu-qiu, zheng zhi-jian, zhou wei-min, jiao chun-ye, wen tian-shu, chunyu shu-tai. Fast electron energy distribution in femtosecond laser plasma interactions[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- .
    [11]xie wen-kai, li xiao-yun, wang bin, meng lin, yan yang, gao xin-yan. Design and experiment of high-current low-pressure plasma-cathode e-gun[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [12]chen guang-hua, li ze-ren, liu shou-xian, chen lin. Defocused 4f differential interferometer for diagnosing electron density distribution in plasma sheath[J]. High Power Laser and Particle Beams, 2005, 17(07): 0- .
    [13]wang chuan-ke, liu shen-ye, kuang long-yu, jiang gang, wang zhe-bin, hu guang-yue, peng xiao-shi, li wen-hong, jiang hiao-hua, liu yong-gang. Plasma electron density diagnosis by Nomarski interferometer with Raman compression cascade system[J]. High Power Laser and Particle Beams, 2005, 17(06): 0- .
    [14]yang bo-qian, zhang ji-yan, han shen-sheng, zheng zhi-jian. Space-resolved diagnosis for the electron density of laser-produced aluminum plasma[J]. High Power Laser and Particle Beams, 2005, 17(05): 0- .
    [15]peng neng-ling, li wen-hong, jiang shao-en, yuan xiao-dong, tang jun, liu yong-gang, . Holographic interferometry of plasma electron density diagnosis[J]. High Power Laser and Particle Beams, 2002, 14(02): 0- .
  • Cited by

    Periodical cited type(3)

    1. 李智宇,李昊,曹鹤飞,金梦哲,胡曼. 基于D-dot传感器的弓网离线放电瞬态电场时域测试方法. 强激光与粒子束. 2022(12): 70-79 . 本站查看
    2. 周澄,许胜,曹健,付焕森. 数字信号处理技术的激光传感器测量误差校准系统. 激光杂志. 2022(11): 41-46 .
    3. 樊欣,李婷峰,王永涛. 基于光传感器测量偏差的实时在线校正方法. 激光杂志. 2020(09): 15-19 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.2 %FULLTEXT: 27.2 %META: 71.4 %META: 71.4 %PDF: 1.4 %PDF: 1.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.5 %其他: 3.5 %China: 0.2 %China: 0.2 %India: 0.1 %India: 0.1 %上海: 1.0 %上海: 1.0 %东京: 0.1 %东京: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %北京: 28.2 %北京: 28.2 %南通: 0.1 %南通: 0.1 %周口: 0.2 %周口: 0.2 %天津: 0.3 %天津: 0.3 %宣城: 0.1 %宣城: 0.1 %巴中: 0.1 %巴中: 0.1 %广州: 0.5 %广州: 0.5 %张家口: 0.4 %张家口: 0.4 %普洱: 0.1 %普洱: 0.1 %杭州: 0.6 %杭州: 0.6 %武汉: 0.3 %武汉: 0.3 %深圳: 0.3 %深圳: 0.3 %温州: 0.3 %温州: 0.3 %漯河: 0.3 %漯河: 0.3 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 17.9 %芒廷维尤: 17.9 %芝加哥: 0.2 %芝加哥: 0.2 %衡水: 0.2 %衡水: 0.2 %衢州: 0.1 %衢州: 0.1 %西宁: 42.3 %西宁: 42.3 %西安: 0.3 %西安: 0.3 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.4 %运城: 0.4 %郑州: 0.5 %郑州: 0.5 %重庆: 0.1 %重庆: 0.1 %长沙: 0.1 %长沙: 0.1 %长治: 0.1 %长治: 0.1 %其他ChinaIndia上海东京中山临汾丹东北京南通周口天津宣城巴中广州张家口普洱杭州武汉深圳温州漯河石家庄秦皇岛芒廷维尤芝加哥衡水衢州西宁西安贵阳运城郑州重庆长沙长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (1048) PDF downloads(151) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return