Yang Jisen, Pan Weimin, Wang Honglei, et al. Digital self-excited vertical test system of superconducting cavity[J]. High Power Laser and Particle Beams, 2020, 32: 045106. doi: 10.11884/HPLPB202032.190320
Citation: Zheng Haitao, Dai Fei, Zhang Lili, et al. Resistivity of nanostructure NiAl-Ni and Ni3Al-Ni alloys at low temperature[J]. High Power Laser and Particle Beams, 2018, 30: 124101. doi: 10.11884/HPLPB201830.180251

Resistivity of nanostructure NiAl-Ni and Ni3Al-Ni alloys at low temperature

doi: 10.11884/HPLPB201830.180251
  • Received Date: 2018-09-28
  • Rev Recd Date: 2018-11-03
  • Publish Date: 2018-12-15
  • Al, Ni and Al-Ni alloy powders were prepared by the flow-levitation method through electromagnetic induction heating, and the nano-powders were compressed into nanostructured samples by vacuum hot pressure sintering furnace. We used the four-point probe method to measure the values of electrical resistivity (ρ) of the nanostructured aluminum, nickel and Al-Ni alloy samples at temperature (T) ranging from 8 K to 300 K to explore the relationship between the electrical resistivity and temperature. The results show that the resistivity of nanostructured Al, Ni and Al-Ni alloys decreased with the decrease of temperature due to the formation of ordered crystalline phase. The nanostructured Ni3Al-Ni and NiAl-Ni alloys showed a maximum value of resistivity to temperature slope near the Curie temperature, and the Curie temperature of Ni3Al-Ni was 20 K higher than that of coarse-grained Ni3Al because of the influence of nickel elemental. The resistivity of nanosturctured Ni3Al-Ni, NiAl-Ni, and Ni show T2 and T4 law at low temperature (8-40 K) due to magneton-electron scattering and phonon-electron scattering.
  • [1]
    Tanimoto H, Eiji K, Mizubayashi H. Characterization and determination of elastic property of high-density nanocrystalline gold prepared by gas-deposition method[J]. Materials Transactions, 2003, 44(1): 94-103. doi: 10.2320/matertrans.44.94
    [2]
    Brandlr, Derlet P, Swygenhoven H. Dislocation mediated plasticity in nanocrystalline Al the strongest size[J]. Modelling and Simulation in Materials Science and Engineering, 2011, 19: 074005. doi: 10.1088/0965-0393/19/7/074005
    [3]
    Ederth J, Kish L, Olsson E. In situ electrical transport during isothermal annealing of nanocrystalline gold films[J]. Journal of Applied Physics, 2002, 91(3): 1529-1535. doi: 10.1063/1.1427399
    [4]
    Madduri, Kaul S N. Disorder-induced non-Fermi liquid behavior of electrical resistivity in nanocrystalline Ni[J]. Physica B: Condensed Matter, 2014, 448: 147-150. doi: 10.1016/j.physb.2014.03.054
    [5]
    Qin X Y, Zhang L, Jiang L D, et al. Low-temperature resistance and its temperature dependence in nanostructured silver[J]. Physical Review B, 1997, 56(16): 10596-10604. doi: 10.1103/PhysRevB.56.10596
    [6]
    Okram, Soni A, Rawat R, et al. Anomalous electrical transport behavior in nanocrystalline nickel[J]. Nanotechnology, 2008, 19: 185711. doi: 10.1088/0957-4484/19/18/185711
    [7]
    AusM J, Szpunar B, Erp U, et al. Electrical resistivity of bulk nanocrystalline nickel[J]. Journal of Applied Physics, 1994, 75(7): 3632-3634. doi: 10.1063/1.356076
    [8]
    Andrievskii R A, Kalinniko G V, Kobelev N P, et al. Structure and physicomechanical properties of nanocrystalline boride-nitride films[J]. Physics of the Solid State, 1997, 39(10): 1661-1666. doi: 10.1134/1.1129885
    [9]
    Zeng H, Ying U, Zhang J X, et al. Grain size-dependent electrical resistivity of bulk nanocrystalline Gd metals[J]. Progress in Natural Science: Materials International, 2013, 23(1): 18-22. doi: 10.1016/j.pnsc.2013.01.003
    [10]
    Tomasz C, Stanislaw W. Structure and mechanical properties of NiAl and Ni3Al-based alloys[J]. International Journal of Mechanical Sciences, 2000, 42(8): 1499-1518. doi: 10.1016/S0020-7403(99)00087-9
    [11]
    Grabke H J. Oxidation of NiAl and FeAl[J]. Intermetallics, 1999, 7(10): 1153-1158. doi: 10.1016/S0966-9795(99)00037-0
    [12]
    李裕. 纳米Al/Al2O3复合材料的制备与低温热容性能研究纳米[D]. 绵阳: 西南科技大学, 2014: 22-23.

    Li Yu. Preparation and low-temperature specific heat of Al/Al2O3 nanostryalline materials. Mianyang: Southwest University of Science and Technology, 2014: 22-23
    [13]
    宋言红, 罗江山, 雷海乐, 等. 纳米晶Al的快中子辐照效应研究[J]. 原子能科学技术, 2015, 49: 355-361. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201502026.htm

    Song Yanhong, Luo Jiangsan, Lei Haile, et al. Effect of neutron irradiation on nanocrystalline Al. Atomic Energy Science and Technology, 2015, 49: 355-361 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201502026.htm
    [14]
    Sigfusson T I, Bernhoeft N R, Lonzarich G G. The de Haas-van Alphen effect, exchange splitting and Curie temperature in the weak itinerant ferromagnetic Ni3Al[J]. Journal of Physics F: Metal Physics, 1984, 14(14): 2141-2154.
    [15]
    Boer F R, Schinkel C J, Biesterbos J. et al. Exchange-enhanced paramagnetism and weak ferromagnetism in the Ni3Al and Ni3Ga phases; giant moment inducement in Fe-doped Ni3Ga[J]. Journal of Applied Physics, 1969, 40(3): 1049-1055. doi: 10.1063/1.1657528
    [16]
    Abhyankar A C, Kaul S N. Effect of off-stoichiometry and site disorder on the properties of Ni3Al: I electrical and magneto-transport[J]. Journal of Physics: Condensed Matter, 2008, 20: 445227. doi: 10.1088/0953-8984/20/44/445227
    [17]
    Mobius A, Goedsche F, Elefa D, et al. Deviations from Matthiessen's rule in the low-temperature resistivity of iron[J]. Physica Status Solidi B—Basic Solid State Physics, 1979, 95(1): 203-214. doi: 10.1002/pssb.2220950123
    [18]
    Kaul S N, Kettler W, Rosenberg M. Evidence for a magnetic contribution to the electrical resistivity in amorphous Fe80B20-xCx alloys[J]. Physical Review B, 1986, 33(7): 4987-4997. doi: 10.1103/PhysRevB.33.4987
    [19]
    孙丽俊, 代飞, 罗江山, 等. 铝纳米晶的低温导电特性研究[J]. 物理学报, 2016, 65: 137303 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201613029.htm

    Sun Lijun, Dai fei, Luo Jiangshan, et al. Electrical resistivity of nanostructured aluminum at low temperature. Acta Physica Sinica, 2016, 65: 1373031 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201613029.htm
    [20]
    Ziman J M. Electrons and phonons[M]. Oxford: Oxford University Press, 1960: 334-335.
    [21]
    Aveek B, Achyut B, Raychaudhuri A K. Temperature dependence of the resistance of metallic nanowires of diameter≥15nm: Applicability of Bloch-Grüneisen theorem[J]. Physical Review B, 2006, 74: 035426. doi: 10.1103/PhysRevB.74.035426
    [22]
    Moussouros P K, Kos J F. Temperature dependence of the electrical resistivity of copper at low temperatures[J]. Canadian Journal of Physics, 1977, 55: 2071-2079. doi: 10.1139/p77-251
    [23]
    Qian L H, Lu Q H, Kong W J. Electrical resistivity of fully-relaxed grain boundaries in nanocrystalline Cu[J]. Scripta Materialia, 2004, 50(11): 1407-1411. doi: 10.1016/j.scriptamat.2004.02.026
    [24]
    Isshiki M, Fukudat Y, Igaki K. Temperature dependence of the electrical resistivity of pure cobalt at low temperatures[J]. Journal of Physics F: Metal Physics, 1984, 14(12): 3007-3013. doi: 10.1088/0305-4608/14/12/021
    [25]
    Grieg D, Harrison J P. The low temperature electrical transport properties of nickel and dilute nickel-copper alloys[J]. Philosophical Magazine, 1965, 12(115): 71-79. doi: 10.1080/14786436508224948
    [26]
    Kaul S N. Validity of Kohler's rule for nickel-copper alloys at high temperatures[J]. Solid State Communications, 1974, 12 (15): 1821-1825.
  • Relative Articles

    [1]Fang Jinyong, Zhai Chang, Wu Jiangniu, Li Qiwei. A method for generating high power comb spectrum microwave[J]. High Power Laser and Particle Beams, 2023, 35(8): 083003. doi: 10.11884/HPLPB202335.230050
    [2]Liu Chang. High power and high-efficiency miniaturized power amplifier with compact microstrip resonant cell[J]. High Power Laser and Particle Beams, 2023, 35(10): 103001. doi: 10.11884/HPLPB202335.230192
    [3]Sun Jiangning, Pan Xiaodong, Lu Xinfu, Wan Haojiang, Wei Guanghui. Performance analysis and development of high-power and high-linearity current injection probes[J]. High Power Laser and Particle Beams, 2021, 33(5): 053008. doi: 10.11884/HPLPB202133.200350
    [4]Li Ya’nan, Liu Shishuo, Cai Jun. Design of high-power wide-band G-band third harmonic amplifier[J]. High Power Laser and Particle Beams, 2021, 33(3): 033002. doi: 10.11884/HPLPB202133.200251
    [5]Zhao Juan, Li Bo, Li Xiqin, Cao Ningxiang, Huang Bin, Yu Zhiguo, Zhang Xin, Wang Lan, Li Hongtao. Design and actualization of high electromagnetic compatibility high power constant-current supply[J]. High Power Laser and Particle Beams, 2018, 30(2): 025007. doi: 10.11884/HPLPB201830.170359
    [6]Ma Qiaosheng, Zhang Yunjian, Li Zhenghong, Wu Yang. Design of high power terahertz backward wave oscillator[J]. High Power Laser and Particle Beams, 2016, 28(09): 093004. doi: 10.11884/HPLPB201628.160002
    [7]Wang Wei, Liu Yi, Shen Yi, Xia Liansheng, Yang Chao, Ye Mao. Experimental study of high gain PCSS triggered by high-power pulse laser diode[J]. High Power Laser and Particle Beams, 2016, 28(09): 095003. doi: 10.11884/HPLPB201628.150883
    [8]Yang Shi, Ren Shuqing, Lai Dingguo, Zhang Yuying, Yang Li, Yao Weibo, Zhang Yongmin. High power high voltage constant current capacitor charging power supply[J]. High Power Laser and Particle Beams, 2015, 27(09): 095006. doi: 10.11884/HPLPB201527.095006
    [9]Wang Xuefeng, Wang Jianguo, Wang Guangqiang, Li Shuang, Xiong Zhengfeng, Lu Xicheng, Peng Jianchang. Performance analysis of a sensing element for high power terahertz pulse measurement[J]. High Power Laser and Particle Beams, 2014, 26(08): 083103. doi: 10.11884/HPLPB201426.083103
    [10]Jiang Kai, Li Peixu, Zhang Xin, Tang Qingmin, Xia Wei, Xu Xiangang. High power 940 nm quantum well laser with asymmetric structure[J]. High Power Laser and Particle Beams, 2014, 26(05): 051022. doi: 10.11884/HPLPB201426.051022
    [11]Sun Hao, Wang Efeng, Zhu Yuan, Zeng Xu, Feng Jinjun, Yan Tiechang. Thermal stability analysis of the collector in W band gyrotron traveling-wave tube[J]. High Power Laser and Particle Beams, 2014, 26(11): 113002. doi: 10.11884/HPLPB201426.113002
    [12]huang wei, chang shaohui, chen zhizhan, shi erwei. On-state characteristics of an 11 kV high-power SiC photoconductive semiconductor switch[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- .
    [13]huang wei, chang shaohui, chen zhizhan, shi erwei. On-state characteristics of an 11 kV high-power SiC photoconductive semiconductor switch[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- .
    [14]liu hongwei, yuan jianqiang, liu jinfeng, li hongtao, xie weiping, jiang weihua. Experimental investigation on lifetime of high power GaAs photoconductive semiconductor switch[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [15]yuan jianqiang, li hongtao, liu hongwei, liu jinfeng, xie weiping, wang xinxin, jiang weihua. Study on high-power photoconductive semiconductor switches[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [16]lin yuanchao, liu qingxiang, zang jiefeng. Transmission of foil-focused relativistic annular electron beam in coaxial cylindrical waveguide[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- .
    [17]li zaijin, hu liming, wang ye, zhang xing, wang xiangpeng, qin li, liu yun, wang lijun. High power high duty-cycle 808 nm wavelength laser diode[J]. High Power Laser and Particle Beams, 2009, 21(11): 0- .
    [18]hu yulu, yang zhonghai, li bin, li jianqing, ma shanshan, huang tao, jin xiaolin. Analysis of static trajectories in traveling wave tubes[J]. High Power Laser and Particle Beams, 2009, 21(12): 0- .
    [19]he xiao-hai, lin li-bin, zhang hui-jun, zhan jia-xue, li qi, zhao jian-hua, jia chao-wei. Development of 1.2 MV high power DC generator[J]. High Power Laser and Particle Beams, 2007, 19(05): 0- .
    [20]zhao feng-li, liu jin-tong, zhou yao-xiang. Development of high power waveguide valve for BEPCⅡ-Linac[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
  • Cited by

    Periodical cited type(2)

    1. 左靖凡,李士锋,吴洋,黄华,孙利民,宋法伦. 带双腔反射器的X波段低磁场过模相对论返波管振荡器. 强激光与粒子束. 2024(03): 63-68 . 本站查看
    2. 张晓微,李永东,白现臣,梁玉钦. 宽间隙反射器相对论返波管同频高阶模式抑制. 强激光与粒子束. 2015(07): 127-132 . 本站查看

    Other cited types(1)

  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.7 %FULLTEXT: 20.7 %META: 67.1 %META: 67.1 %PDF: 12.2 %PDF: 12.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.8 %其他: 8.8 %其他: 0.8 %其他: 0.8 %Bradford: 0.2 %Bradford: 0.2 %Japan: 1.1 %Japan: 1.1 %San Lorenzo: 0.2 %San Lorenzo: 0.2 %Taichung: 0.3 %Taichung: 0.3 %Tiran: 0.1 %Tiran: 0.1 %[]: 1.9 %[]: 1.9 %丁克尔舍尔本: 0.3 %丁克尔舍尔本: 0.3 %上海: 2.4 %上海: 2.4 %不列颠哥伦比亚: 0.1 %不列颠哥伦比亚: 0.1 %东莞: 0.4 %东莞: 0.4 %中卫: 0.1 %中卫: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %伊斯坦布尔: 0.2 %伊斯坦布尔: 0.2 %佛山: 0.2 %佛山: 0.2 %佛罗里达州: 0.1 %佛罗里达州: 0.1 %保定: 0.2 %保定: 0.2 %六安: 0.3 %六安: 0.3 %兰州: 0.1 %兰州: 0.1 %北京: 7.1 %北京: 7.1 %北海: 0.1 %北海: 0.1 %十堰: 0.3 %十堰: 0.3 %南京: 0.8 %南京: 0.8 %南宁: 0.1 %南宁: 0.1 %南昌: 0.2 %南昌: 0.2 %南通: 0.1 %南通: 0.1 %台北: 0.3 %台北: 0.3 %台州: 0.4 %台州: 0.4 %合肥: 0.3 %合肥: 0.3 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.2 %唐山: 0.2 %嘉兴: 0.3 %嘉兴: 0.3 %多伦多: 0.1 %多伦多: 0.1 %天津: 1.6 %天津: 1.6 %太原: 0.1 %太原: 0.1 %娄底: 0.1 %娄底: 0.1 %宁波: 0.1 %宁波: 0.1 %安康: 0.1 %安康: 0.1 %宜宾: 0.2 %宜宾: 0.2 %宣城: 0.5 %宣城: 0.5 %宿迁: 0.1 %宿迁: 0.1 %密蘇里城: 0.2 %密蘇里城: 0.2 %巴中: 0.1 %巴中: 0.1 %巴登-符腾堡州: 0.1 %巴登-符腾堡州: 0.1 %布尔萨: 0.1 %布尔萨: 0.1 %布达佩斯: 0.1 %布达佩斯: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.5 %常德: 0.5 %广州: 0.6 %广州: 0.6 %廊坊: 0.1 %廊坊: 0.1 %延边: 0.1 %延边: 0.1 %张家口: 0.7 %张家口: 0.7 %徐州: 0.2 %徐州: 0.2 %德黑兰: 0.8 %德黑兰: 0.8 %成都: 2.9 %成都: 2.9 %扬州: 0.3 %扬州: 0.3 %新余: 0.1 %新余: 0.1 %无锡: 0.2 %无锡: 0.2 %昆明: 0.6 %昆明: 0.6 %晋城: 0.3 %晋城: 0.3 %普洱: 0.1 %普洱: 0.1 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.0 %杭州: 1.0 %武汉: 2.0 %武汉: 2.0 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.7 %济南: 0.7 %深圳: 1.4 %深圳: 1.4 %温州: 0.3 %温州: 0.3 %渭南: 0.1 %渭南: 0.1 %湖州: 0.5 %湖州: 0.5 %漯河: 1.7 %漯河: 1.7 %漳州: 0.1 %漳州: 0.1 %珠海: 0.2 %珠海: 0.2 %班加罗尔: 0.1 %班加罗尔: 0.1 %石家庄: 0.5 %石家庄: 0.5 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.2 %秦皇岛: 0.2 %米兰: 0.2 %米兰: 0.2 %绵阳: 2.2 %绵阳: 2.2 %耶拿: 0.2 %耶拿: 0.2 %芒廷维尤: 18.0 %芒廷维尤: 18.0 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.3 %苏州: 0.3 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 20.0 %西宁: 20.0 %西安: 0.4 %西安: 0.4 %诺沃克: 3.4 %诺沃克: 3.4 %贵阳: 0.6 %贵阳: 0.6 %费利蒙: 0.1 %费利蒙: 0.1 %赤峰: 0.1 %赤峰: 0.1 %运城: 1.1 %运城: 1.1 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.8 %郑州: 0.8 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.1 %重庆: 0.1 %铁岭: 0.1 %铁岭: 0.1 %长春: 0.3 %长春: 0.3 %长沙: 2.9 %长沙: 2.9 %长治: 0.1 %长治: 0.1 %阿坝: 0.1 %阿坝: 0.1 %青岛: 0.6 %青岛: 0.6 %香港: 0.1 %香港: 0.1 %其他其他BradfordJapanSan LorenzoTaichungTiran[]丁克尔舍尔本上海不列颠哥伦比亚东莞中卫中山临汾丹东丽水伊斯坦布尔佛山佛罗里达州保定六安兰州北京北海十堰南京南宁南昌南通台北台州合肥哈尔滨哥伦布唐山嘉兴多伦多天津太原娄底宁波安康宜宾宣城宿迁密蘇里城巴中巴登-符腾堡州布尔萨布达佩斯常州常德广州廊坊延边张家口徐州德黑兰成都扬州新余无锡昆明晋城普洱朝阳杭州武汉沈阳洛阳济南深圳温州渭南湖州漯河漳州珠海班加罗尔石家庄福州秦皇岛米兰绵阳耶拿芒廷维尤芝加哥苏州衡阳衢州西宁西安诺沃克贵阳费利蒙赤峰运城遵义邯郸郑州鄂州重庆铁岭长春长沙长治阿坝青岛香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views (1371) PDF downloads(127) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return