Citation: | Zheng Haitao, Dai Fei, Zhang Lili, et al. Resistivity of nanostructure NiAl-Ni and Ni3Al-Ni alloys at low temperature[J]. High Power Laser and Particle Beams, 2018, 30: 124101. doi: 10.11884/HPLPB201830.180251 |
[1] |
Tanimoto H, Eiji K, Mizubayashi H. Characterization and determination of elastic property of high-density nanocrystalline gold prepared by gas-deposition method[J]. Materials Transactions, 2003, 44(1): 94-103. doi: 10.2320/matertrans.44.94
|
[2] |
Brandlr, Derlet P, Swygenhoven H. Dislocation mediated plasticity in nanocrystalline Al the strongest size[J]. Modelling and Simulation in Materials Science and Engineering, 2011, 19: 074005. doi: 10.1088/0965-0393/19/7/074005
|
[3] |
Ederth J, Kish L, Olsson E. In situ electrical transport during isothermal annealing of nanocrystalline gold films[J]. Journal of Applied Physics, 2002, 91(3): 1529-1535. doi: 10.1063/1.1427399
|
[4] |
Madduri, Kaul S N. Disorder-induced non-Fermi liquid behavior of electrical resistivity in nanocrystalline Ni[J]. Physica B: Condensed Matter, 2014, 448: 147-150. doi: 10.1016/j.physb.2014.03.054
|
[5] |
Qin X Y, Zhang L, Jiang L D, et al. Low-temperature resistance and its temperature dependence in nanostructured silver[J]. Physical Review B, 1997, 56(16): 10596-10604. doi: 10.1103/PhysRevB.56.10596
|
[6] |
Okram, Soni A, Rawat R, et al. Anomalous electrical transport behavior in nanocrystalline nickel[J]. Nanotechnology, 2008, 19: 185711. doi: 10.1088/0957-4484/19/18/185711
|
[7] |
AusM J, Szpunar B, Erp U, et al. Electrical resistivity of bulk nanocrystalline nickel[J]. Journal of Applied Physics, 1994, 75(7): 3632-3634. doi: 10.1063/1.356076
|
[8] |
Andrievskii R A, Kalinniko G V, Kobelev N P, et al. Structure and physicomechanical properties of nanocrystalline boride-nitride films[J]. Physics of the Solid State, 1997, 39(10): 1661-1666. doi: 10.1134/1.1129885
|
[9] |
Zeng H, Ying U, Zhang J X, et al. Grain size-dependent electrical resistivity of bulk nanocrystalline Gd metals[J]. Progress in Natural Science: Materials International, 2013, 23(1): 18-22. doi: 10.1016/j.pnsc.2013.01.003
|
[10] |
Tomasz C, Stanislaw W. Structure and mechanical properties of NiAl and Ni3Al-based alloys[J]. International Journal of Mechanical Sciences, 2000, 42(8): 1499-1518. doi: 10.1016/S0020-7403(99)00087-9
|
[11] |
Grabke H J. Oxidation of NiAl and FeAl[J]. Intermetallics, 1999, 7(10): 1153-1158. doi: 10.1016/S0966-9795(99)00037-0
|
[12] |
李裕. 纳米Al/Al2O3复合材料的制备与低温热容性能研究纳米[D]. 绵阳: 西南科技大学, 2014: 22-23.
Li Yu. Preparation and low-temperature specific heat of Al/Al2O3 nanostryalline materials. Mianyang: Southwest University of Science and Technology, 2014: 22-23
|
[13] |
宋言红, 罗江山, 雷海乐, 等. 纳米晶Al的快中子辐照效应研究[J]. 原子能科学技术, 2015, 49: 355-361. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201502026.htm
Song Yanhong, Luo Jiangsan, Lei Haile, et al. Effect of neutron irradiation on nanocrystalline Al. Atomic Energy Science and Technology, 2015, 49: 355-361 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201502026.htm
|
[14] |
Sigfusson T I, Bernhoeft N R, Lonzarich G G. The de Haas-van Alphen effect, exchange splitting and Curie temperature in the weak itinerant ferromagnetic Ni3Al[J]. Journal of Physics F: Metal Physics, 1984, 14(14): 2141-2154.
|
[15] |
Boer F R, Schinkel C J, Biesterbos J. et al. Exchange-enhanced paramagnetism and weak ferromagnetism in the Ni3Al and Ni3Ga phases; giant moment inducement in Fe-doped Ni3Ga[J]. Journal of Applied Physics, 1969, 40(3): 1049-1055. doi: 10.1063/1.1657528
|
[16] |
Abhyankar A C, Kaul S N. Effect of off-stoichiometry and site disorder on the properties of Ni3Al: I electrical and magneto-transport[J]. Journal of Physics: Condensed Matter, 2008, 20: 445227. doi: 10.1088/0953-8984/20/44/445227
|
[17] |
Mobius A, Goedsche F, Elefa D, et al. Deviations from Matthiessen's rule in the low-temperature resistivity of iron[J]. Physica Status Solidi B—Basic Solid State Physics, 1979, 95(1): 203-214. doi: 10.1002/pssb.2220950123
|
[18] |
Kaul S N, Kettler W, Rosenberg M. Evidence for a magnetic contribution to the electrical resistivity in amorphous Fe80B20-xCx alloys[J]. Physical Review B, 1986, 33(7): 4987-4997. doi: 10.1103/PhysRevB.33.4987
|
[19] |
孙丽俊, 代飞, 罗江山, 等. 铝纳米晶的低温导电特性研究[J]. 物理学报, 2016, 65: 137303 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201613029.htm
Sun Lijun, Dai fei, Luo Jiangshan, et al. Electrical resistivity of nanostructured aluminum at low temperature. Acta Physica Sinica, 2016, 65: 1373031 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201613029.htm
|
[20] |
Ziman J M. Electrons and phonons[M]. Oxford: Oxford University Press, 1960: 334-335.
|
[21] |
Aveek B, Achyut B, Raychaudhuri A K. Temperature dependence of the resistance of metallic nanowires of diameter≥15nm: Applicability of Bloch-Grüneisen theorem[J]. Physical Review B, 2006, 74: 035426. doi: 10.1103/PhysRevB.74.035426
|
[22] |
Moussouros P K, Kos J F. Temperature dependence of the electrical resistivity of copper at low temperatures[J]. Canadian Journal of Physics, 1977, 55: 2071-2079. doi: 10.1139/p77-251
|
[23] |
Qian L H, Lu Q H, Kong W J. Electrical resistivity of fully-relaxed grain boundaries in nanocrystalline Cu[J]. Scripta Materialia, 2004, 50(11): 1407-1411. doi: 10.1016/j.scriptamat.2004.02.026
|
[24] |
Isshiki M, Fukudat Y, Igaki K. Temperature dependence of the electrical resistivity of pure cobalt at low temperatures[J]. Journal of Physics F: Metal Physics, 1984, 14(12): 3007-3013. doi: 10.1088/0305-4608/14/12/021
|
[25] |
Grieg D, Harrison J P. The low temperature electrical transport properties of nickel and dilute nickel-copper alloys[J]. Philosophical Magazine, 1965, 12(115): 71-79. doi: 10.1080/14786436508224948
|
[26] |
Kaul S N. Validity of Kohler's rule for nickel-copper alloys at high temperatures[J]. Solid State Communications, 1974, 12 (15): 1821-1825.
|