Volume 30 Issue 12
Dec.  2018
Turn off MathJax
Article Contents
Zheng Haitao, Dai Fei, Zhang Lili, et al. Resistivity of nanostructure NiAl-Ni and Ni3Al-Ni alloys at low temperature[J]. High Power Laser and Particle Beams, 2018, 30: 124101. doi: 10.11884/HPLPB201830.180251
Citation: Zheng Haitao, Dai Fei, Zhang Lili, et al. Resistivity of nanostructure NiAl-Ni and Ni3Al-Ni alloys at low temperature[J]. High Power Laser and Particle Beams, 2018, 30: 124101. doi: 10.11884/HPLPB201830.180251

Resistivity of nanostructure NiAl-Ni and Ni3Al-Ni alloys at low temperature

doi: 10.11884/HPLPB201830.180251
  • Received Date: 2018-09-28
  • Rev Recd Date: 2018-11-03
  • Publish Date: 2018-12-15
  • Al, Ni and Al-Ni alloy powders were prepared by the flow-levitation method through electromagnetic induction heating, and the nano-powders were compressed into nanostructured samples by vacuum hot pressure sintering furnace. We used the four-point probe method to measure the values of electrical resistivity (ρ) of the nanostructured aluminum, nickel and Al-Ni alloy samples at temperature (T) ranging from 8 K to 300 K to explore the relationship between the electrical resistivity and temperature. The results show that the resistivity of nanostructured Al, Ni and Al-Ni alloys decreased with the decrease of temperature due to the formation of ordered crystalline phase. The nanostructured Ni3Al-Ni and NiAl-Ni alloys showed a maximum value of resistivity to temperature slope near the Curie temperature, and the Curie temperature of Ni3Al-Ni was 20 K higher than that of coarse-grained Ni3Al because of the influence of nickel elemental. The resistivity of nanosturctured Ni3Al-Ni, NiAl-Ni, and Ni show T2 and T4 law at low temperature (8-40 K) due to magneton-electron scattering and phonon-electron scattering.
  • loading
  • [1]
    Tanimoto H, Eiji K, Mizubayashi H. Characterization and determination of elastic property of high-density nanocrystalline gold prepared by gas-deposition method[J]. Materials Transactions, 2003, 44(1): 94-103. doi: 10.2320/matertrans.44.94
    [2]
    Brandlr, Derlet P, Swygenhoven H. Dislocation mediated plasticity in nanocrystalline Al the strongest size[J]. Modelling and Simulation in Materials Science and Engineering, 2011, 19: 074005. doi: 10.1088/0965-0393/19/7/074005
    [3]
    Ederth J, Kish L, Olsson E. In situ electrical transport during isothermal annealing of nanocrystalline gold films[J]. Journal of Applied Physics, 2002, 91(3): 1529-1535. doi: 10.1063/1.1427399
    [4]
    Madduri, Kaul S N. Disorder-induced non-Fermi liquid behavior of electrical resistivity in nanocrystalline Ni[J]. Physica B: Condensed Matter, 2014, 448: 147-150. doi: 10.1016/j.physb.2014.03.054
    [5]
    Qin X Y, Zhang L, Jiang L D, et al. Low-temperature resistance and its temperature dependence in nanostructured silver[J]. Physical Review B, 1997, 56(16): 10596-10604. doi: 10.1103/PhysRevB.56.10596
    [6]
    Okram, Soni A, Rawat R, et al. Anomalous electrical transport behavior in nanocrystalline nickel[J]. Nanotechnology, 2008, 19: 185711. doi: 10.1088/0957-4484/19/18/185711
    [7]
    AusM J, Szpunar B, Erp U, et al. Electrical resistivity of bulk nanocrystalline nickel[J]. Journal of Applied Physics, 1994, 75(7): 3632-3634. doi: 10.1063/1.356076
    [8]
    Andrievskii R A, Kalinniko G V, Kobelev N P, et al. Structure and physicomechanical properties of nanocrystalline boride-nitride films[J]. Physics of the Solid State, 1997, 39(10): 1661-1666. doi: 10.1134/1.1129885
    [9]
    Zeng H, Ying U, Zhang J X, et al. Grain size-dependent electrical resistivity of bulk nanocrystalline Gd metals[J]. Progress in Natural Science: Materials International, 2013, 23(1): 18-22. doi: 10.1016/j.pnsc.2013.01.003
    [10]
    Tomasz C, Stanislaw W. Structure and mechanical properties of NiAl and Ni3Al-based alloys[J]. International Journal of Mechanical Sciences, 2000, 42(8): 1499-1518. doi: 10.1016/S0020-7403(99)00087-9
    [11]
    Grabke H J. Oxidation of NiAl and FeAl[J]. Intermetallics, 1999, 7(10): 1153-1158. doi: 10.1016/S0966-9795(99)00037-0
    [12]
    李裕. 纳米Al/Al2O3复合材料的制备与低温热容性能研究纳米[D]. 绵阳: 西南科技大学, 2014: 22-23.

    Li Yu. Preparation and low-temperature specific heat of Al/Al2O3 nanostryalline materials. Mianyang: Southwest University of Science and Technology, 2014: 22-23
    [13]
    宋言红, 罗江山, 雷海乐, 等. 纳米晶Al的快中子辐照效应研究[J]. 原子能科学技术, 2015, 49: 355-361. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201502026.htm

    Song Yanhong, Luo Jiangsan, Lei Haile, et al. Effect of neutron irradiation on nanocrystalline Al. Atomic Energy Science and Technology, 2015, 49: 355-361 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201502026.htm
    [14]
    Sigfusson T I, Bernhoeft N R, Lonzarich G G. The de Haas-van Alphen effect, exchange splitting and Curie temperature in the weak itinerant ferromagnetic Ni3Al[J]. Journal of Physics F: Metal Physics, 1984, 14(14): 2141-2154.
    [15]
    Boer F R, Schinkel C J, Biesterbos J. et al. Exchange-enhanced paramagnetism and weak ferromagnetism in the Ni3Al and Ni3Ga phases; giant moment inducement in Fe-doped Ni3Ga[J]. Journal of Applied Physics, 1969, 40(3): 1049-1055. doi: 10.1063/1.1657528
    [16]
    Abhyankar A C, Kaul S N. Effect of off-stoichiometry and site disorder on the properties of Ni3Al: I electrical and magneto-transport[J]. Journal of Physics: Condensed Matter, 2008, 20: 445227. doi: 10.1088/0953-8984/20/44/445227
    [17]
    Mobius A, Goedsche F, Elefa D, et al. Deviations from Matthiessen's rule in the low-temperature resistivity of iron[J]. Physica Status Solidi B—Basic Solid State Physics, 1979, 95(1): 203-214. doi: 10.1002/pssb.2220950123
    [18]
    Kaul S N, Kettler W, Rosenberg M. Evidence for a magnetic contribution to the electrical resistivity in amorphous Fe80B20-xCx alloys[J]. Physical Review B, 1986, 33(7): 4987-4997. doi: 10.1103/PhysRevB.33.4987
    [19]
    孙丽俊, 代飞, 罗江山, 等. 铝纳米晶的低温导电特性研究[J]. 物理学报, 2016, 65: 137303 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201613029.htm

    Sun Lijun, Dai fei, Luo Jiangshan, et al. Electrical resistivity of nanostructured aluminum at low temperature. Acta Physica Sinica, 2016, 65: 1373031 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201613029.htm
    [20]
    Ziman J M. Electrons and phonons[M]. Oxford: Oxford University Press, 1960: 334-335.
    [21]
    Aveek B, Achyut B, Raychaudhuri A K. Temperature dependence of the resistance of metallic nanowires of diameter≥15nm: Applicability of Bloch-Grüneisen theorem[J]. Physical Review B, 2006, 74: 035426. doi: 10.1103/PhysRevB.74.035426
    [22]
    Moussouros P K, Kos J F. Temperature dependence of the electrical resistivity of copper at low temperatures[J]. Canadian Journal of Physics, 1977, 55: 2071-2079. doi: 10.1139/p77-251
    [23]
    Qian L H, Lu Q H, Kong W J. Electrical resistivity of fully-relaxed grain boundaries in nanocrystalline Cu[J]. Scripta Materialia, 2004, 50(11): 1407-1411. doi: 10.1016/j.scriptamat.2004.02.026
    [24]
    Isshiki M, Fukudat Y, Igaki K. Temperature dependence of the electrical resistivity of pure cobalt at low temperatures[J]. Journal of Physics F: Metal Physics, 1984, 14(12): 3007-3013. doi: 10.1088/0305-4608/14/12/021
    [25]
    Grieg D, Harrison J P. The low temperature electrical transport properties of nickel and dilute nickel-copper alloys[J]. Philosophical Magazine, 1965, 12(115): 71-79. doi: 10.1080/14786436508224948
    [26]
    Kaul S N. Validity of Kohler's rule for nickel-copper alloys at high temperatures[J]. Solid State Communications, 1974, 12 (15): 1821-1825.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views (1174) PDF downloads(121) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return