Volume 30 Issue 11
Nov.  2018
Turn off MathJax
Article Contents
Deng Zhigang, He Shukai, Cui Bo, et al. Generation of high-quality electron beams based on tightly focused super-Gaussian laser[J]. High Power Laser and Particle Beams, 2018, 30: 111003. doi: 10.11884/HPLPB201830.180262
Citation: Deng Zhigang, He Shukai, Cui Bo, et al. Generation of high-quality electron beams based on tightly focused super-Gaussian laser[J]. High Power Laser and Particle Beams, 2018, 30: 111003. doi: 10.11884/HPLPB201830.180262

Generation of high-quality electron beams based on tightly focused super-Gaussian laser

doi: 10.11884/HPLPB201830.180262
  • Received Date: 2018-10-10
  • Rev Recd Date: 2018-11-02
  • Publish Date: 2018-11-15
  • Electron optical injection is an efficient all-optical injection scheme in laser wakefield accelerations. However, low-charge and large emittance electron beam is still not suitable for many practical applications. This paper presents a novel injection scheme by colliding a tightly focused super-Gaussian laser with a Gaussian pump laser. It is found that the emittance of electron beam becomes almost an order of magnitude lower than that of all-Gaussian case, while the charge of electron bunch is conserved. It is also found that the electron emittance is mainly attributed to off-axis injected electrons by a Hamiltonian model. This unique ability will pave the way towards the generation of high-quality electron beams and extend the applications of laser-plasma accelerators.
  • loading
  • [1]
    Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 2009, 81: 1229-1285. doi: 10.1103/RevModPhys.81.1229
    [2]
    Leemans W P, Nagler B, Gonsalves A J, et al. GeV electron beams from a centimetre-scale accelerator[J]. Nature Physics, 2006, 2(10): 696-699. doi: 10.1038/nphys418
    [3]
    Hafz N A M, Jeong T M, Choi I W, et al. Stable generation of GeV-class electron beams from self-guided laser-plasma channels[J]. Nature Photonics, 2011, 2(9): 571-577.
    [4]
    Clayton C E, Ralph J E, Albert F, et al. Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection[J]. Physical Review Letters, 2010, 105: 105003. doi: 10.1103/PhysRevLett.105.105003
    [5]
    Kim H T, Pae K H, Cha H J, et al. Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses[J]. Physical Review Letters, 2013, 111: 165002. doi: 10.1103/PhysRevLett.111.165002
    [6]
    Wang X M, Zgadzaj R, Fazel N, et al. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV[J]. Nature Communications, 2013, 4(3): 131-140.
    [7]
    Leemans W P, Gonsalves A J, Mao H S, et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime[J]. Physical Review Letters, 2014, 113: 245002. doi: 10.1103/PhysRevLett.113.245002
    [8]
    Yang L, Deng Z, Zhou C T, et al. High-charge energetic electron bunch generated by intersecting laser pulses[J]. Physics of Plasmas, 2013, 20: 033102. doi: 10.1063/1.4794352
    [9]
    Kalmykov S Y, Beck A, Yi S A, et al. Electron self-injection into an evolving plasma bubble: Quasi-monoenergetic laser-plasma acceleration in the blowout regime[J]. Physics of Plasmas, 2011, 18(5): R6189.
    [10]
    Shen B, Wu Y, Dong K, et al. High-charge energetic electron bunch generated by 100 TW laser pulse[J]. Physics of Plasmas, 2012, 19: 033106. doi: 10.1063/1.3694679
    [11]
    Németh K, Shen B, Li Y, et al. Laser-driven coherent betatron oscillation in a laser-wakefield cavity[J]. Physical Review Letters, 2008, 100: 095002. doi: 10.1103/PhysRevLett.100.095002
    [12]
    Fuchs M, Weingartner R, Popp A, et al. Laser-driven soft-X-ray undulator source[J]. Nature Physics, 2009, 5(11): 826-829. doi: 10.1038/nphys1404
    [13]
    Corde S, Phuoc K T, Fitour R, et al. Controlled betatron X-ray radiation from tunable optically injected electrons[J]. Physical Review Letters, 2011, 107: 255003. doi: 10.1103/PhysRevLett.107.255003
    [14]
    Yan W, Chen L, Li D, et al. Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble[J]. Proc Natl Acad Sci USA, 2014, 111(16): 5825-5830. doi: 10.1073/pnas.1404336111
    [15]
    Chen M, Esarey E, Schroeder C B, et al. Theory of ionization-induced trapping in laser-plasma accelerators[J]. Physics of Plasmas, 2012, 19: 033101. doi: 10.1063/1.3689922
    [16]
    Yu L, Esarey E, Schroeder C B, et al. Two-color laser-ionization injection[J]. Physical Review Letters, 2014, 112: 125001. doi: 10.1103/PhysRevLett.112.125001
    [17]
    SSchmid K, Buck A, Sears C M S, et al. Density-transition based electron injector for laser driven wakefield accelerators[J]. Physical Review Special Topics—Accelerators and Beams, 2010, 13: 091301. doi: 10.1103/PhysRevSTAB.13.091301
    [18]
    Buck A, Wenz J, Xu J, et al. Shock-front injector for high-quality laser-plasma acceleration[J]. Physical Review Letters, 2013, 110(18): 185006. doi: 10.1103/PhysRevLett.110.185006
    [19]
    Umstadter D, Kim J K, Dodd E. Laser injection of ultrashort electron pulses into wakefield plasma waves[J]. Physical Review Letters, 1996, 76(12): 2073-2076. doi: 10.1103/PhysRevLett.76.2073
    [20]
    Esarey E, Hubbard R F, Leemans W P, et al. Electron injection into plasma wake fields by colliding laser pulses[J]. Physical Review Letters, 1997, 79(14): 2682-2685. doi: 10.1103/PhysRevLett.79.2682
    [21]
    Schroeder C B, Lee P B, Wurtele J S, et al. Generation of ultra-short electron bunches by colliding laser pulses[J]. Physical Review E, 1999, 59: 6037-6047. doi: 10.1103/PhysRevE.59.6037
    [22]
    Kotaki H, Masuda S, Kando M, et al. Head-on injection of a high quality electron beam by the interaction of two laser pulses[J]. Physics of Plasmas, 2004, 11(9): 4539-4539. doi: 10.1063/1.1775802
    [23]
    Fubiani G, Esarey E, Schroeder C B, et al. Beat wave injection of electrons into plasma waves using two interfering laser pulses[J]. Physical Review E, 2004, 70: 016402. doi: 10.1103/PhysRevE.70.016402
    [24]
    Sheng Z M, Mima K, Zhang J, et al. Efficient acceleration of electrons with counterpropagating intense laser pulses in vacuum and underdense plasma[J]. Physical Review E, 2004, 69: 016407. doi: 10.1103/PhysRevE.69.016407
    [25]
    Faure J, Rechatin C, Norlin A, et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses[J]. Nature, 2006, 444(7120): 737-739. doi: 10.1038/nature05393
    [26]
    Rechatin C, Faure J, Lifschitz A, et al. Quasi-monoenergetic electron beams produced by colliding cross-polarized laser pulses in underdense plasmas[J]. New Journal of Physics, 2009, 11: 013011. doi: 10.1088/1367-2630/11/1/013011
    [27]
    Davoine X, Lefebvre E, Rechatin C, et al. Cold optical injection producing monoenergetic, multi-GeV electron bunches[J]. Physical Review Letters, 2009, 102: 065001. doi: 10.1103/PhysRevLett.102.065001
    [28]
    Beck A, Davoine X, Lefebvre E. Scaling laws for electron cold injection in the narrow collision pulse approximation[J]. New Journal of Physics, 2011, 13(9): 093016. doi: 10.1088/1367-2630/13/9/093016
    [29]
    Wang W M, Sheng Z M. Effect of laser parameters on electron injection into laser wakefields in plasma with a counterpropagating additional laser pulse[J]. Physics of Plasmas, 2008, 15: 13101. doi: 10.1063/1.2825671
    [30]
    Rechatin C, Faure J, Ben-Ismail A, et al. Controlling the phase-space volume of injected electrons in a laser-plasma accelerator[J]. Physical Review Letters, 2009, 102: 164801. doi: 10.1103/PhysRevLett.102.164801
    [31]
    Deng Z G, Yang L, Zhou C T, et al. Dual effects of stochastic heating on electron injection in laser wakefield acceleration[J]. Physics of Plasmas, 2014, 21: 083103. doi: 10.1063/1.4892262
    [32]
    Lehe R, Lifschitz A F, Davoine X, et al. Optical transverse injection in laser-plasma acceleration[J]. Physical Review Letters, 2013, 111: 085005. doi: 10.1103/PhysRevLett.111.085005
    [33]
    Cormier-Michel E, Ranjbar V, Bruhwiler D, et al. Design principles for high quality electron beams via colliding pulses in laser plasma accelerators[J]. Physical Review Special Topics—Accelerators and Beams, 2014, 17: 091301. doi: 10.1103/PhysRevSTAB.17.091301
    [34]
    Deng Z G, Zhang Z M, Zhang B, et al. Large-charge quasimonoenergetic electron beams produced by off-axis colliding laser pulses in underdense plasma[J]. Physical Review E, 2017, 95(2/1): 023206.
    [35]
    Rechatin C, Faure J, Lifschitz A, et al. Plasma wake inhibition at the collision of two laser pulses in an underdense plasma[J]. Physics of Plasmas, 2007, 14: 060702. doi: 10.1063/1.2741387
    [36]
    Tzoufras M, Lu W, Tsung F S, et al. Beam loading in the nonlinear regime of plasma-based acceleration[J]. Physical Review Letters, 2008, 101: 145002. doi: 10.1103/PhysRevLett.101.145002
    [37]
    Rechatin C, Faure J, Davoine X, et al. Characterization of the beam loading effects in a laser plasma accelerator[J]. New Journal of Physics, 2010, 12: 045023. doi: 10.1088/1367-2630/12/4/045023
    [38]
    Davoine X, Beck A, Lifschitz A, et al. Cold injection for electron wakefield acceleration[J]. New Journal of Physics, 2010, 12: 095010. doi: 10.1088/1367-2630/12/9/095010
    [39]
    Lu W, Huang C, Zhou M, et al. Nonlinear theory for relativistic plasma wakefields in the blowout regime[J]. Physical Review Letters, 2006, 96: 165002. doi: 10.1103/PhysRevLett.96.165002
    [40]
    Esarey E, Pilloff M. Trapping and acceleration in nonlinear plasma waves[J]. Physics of Plasmas, 1995, 2(5): 1432-1436. doi: 10.1063/1.871358
    [41]
    Kostyukov I, Pukhov A, Kiselev S. Phenomenological theory of laser-plasma interaction in "bubble" regime[J]. Physics of Plasmas, 2004, 11(11): 5256-5264. doi: 10.1063/1.1799371
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article views (1346) PDF downloads(128) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return