Citation: | Deng Zhigang, He Shukai, Cui Bo, et al. Generation of high-quality electron beams based on tightly focused super-Gaussian laser[J]. High Power Laser and Particle Beams, 2018, 30: 111003. doi: 10.11884/HPLPB201830.180262 |
[1] |
Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 2009, 81: 1229-1285. doi: 10.1103/RevModPhys.81.1229
|
[2] |
Leemans W P, Nagler B, Gonsalves A J, et al. GeV electron beams from a centimetre-scale accelerator[J]. Nature Physics, 2006, 2(10): 696-699. doi: 10.1038/nphys418
|
[3] |
Hafz N A M, Jeong T M, Choi I W, et al. Stable generation of GeV-class electron beams from self-guided laser-plasma channels[J]. Nature Photonics, 2011, 2(9): 571-577.
|
[4] |
Clayton C E, Ralph J E, Albert F, et al. Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection[J]. Physical Review Letters, 2010, 105: 105003. doi: 10.1103/PhysRevLett.105.105003
|
[5] |
Kim H T, Pae K H, Cha H J, et al. Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses[J]. Physical Review Letters, 2013, 111: 165002. doi: 10.1103/PhysRevLett.111.165002
|
[6] |
Wang X M, Zgadzaj R, Fazel N, et al. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV[J]. Nature Communications, 2013, 4(3): 131-140.
|
[7] |
Leemans W P, Gonsalves A J, Mao H S, et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime[J]. Physical Review Letters, 2014, 113: 245002. doi: 10.1103/PhysRevLett.113.245002
|
[8] |
Yang L, Deng Z, Zhou C T, et al. High-charge energetic electron bunch generated by intersecting laser pulses[J]. Physics of Plasmas, 2013, 20: 033102. doi: 10.1063/1.4794352
|
[9] |
Kalmykov S Y, Beck A, Yi S A, et al. Electron self-injection into an evolving plasma bubble: Quasi-monoenergetic laser-plasma acceleration in the blowout regime[J]. Physics of Plasmas, 2011, 18(5): R6189.
|
[10] |
Shen B, Wu Y, Dong K, et al. High-charge energetic electron bunch generated by 100 TW laser pulse[J]. Physics of Plasmas, 2012, 19: 033106. doi: 10.1063/1.3694679
|
[11] |
Németh K, Shen B, Li Y, et al. Laser-driven coherent betatron oscillation in a laser-wakefield cavity[J]. Physical Review Letters, 2008, 100: 095002. doi: 10.1103/PhysRevLett.100.095002
|
[12] |
Fuchs M, Weingartner R, Popp A, et al. Laser-driven soft-X-ray undulator source[J]. Nature Physics, 2009, 5(11): 826-829. doi: 10.1038/nphys1404
|
[13] |
Corde S, Phuoc K T, Fitour R, et al. Controlled betatron X-ray radiation from tunable optically injected electrons[J]. Physical Review Letters, 2011, 107: 255003. doi: 10.1103/PhysRevLett.107.255003
|
[14] |
Yan W, Chen L, Li D, et al. Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble[J]. Proc Natl Acad Sci USA, 2014, 111(16): 5825-5830. doi: 10.1073/pnas.1404336111
|
[15] |
Chen M, Esarey E, Schroeder C B, et al. Theory of ionization-induced trapping in laser-plasma accelerators[J]. Physics of Plasmas, 2012, 19: 033101. doi: 10.1063/1.3689922
|
[16] |
Yu L, Esarey E, Schroeder C B, et al. Two-color laser-ionization injection[J]. Physical Review Letters, 2014, 112: 125001. doi: 10.1103/PhysRevLett.112.125001
|
[17] |
SSchmid K, Buck A, Sears C M S, et al. Density-transition based electron injector for laser driven wakefield accelerators[J]. Physical Review Special Topics—Accelerators and Beams, 2010, 13: 091301. doi: 10.1103/PhysRevSTAB.13.091301
|
[18] |
Buck A, Wenz J, Xu J, et al. Shock-front injector for high-quality laser-plasma acceleration[J]. Physical Review Letters, 2013, 110(18): 185006. doi: 10.1103/PhysRevLett.110.185006
|
[19] |
Umstadter D, Kim J K, Dodd E. Laser injection of ultrashort electron pulses into wakefield plasma waves[J]. Physical Review Letters, 1996, 76(12): 2073-2076. doi: 10.1103/PhysRevLett.76.2073
|
[20] |
Esarey E, Hubbard R F, Leemans W P, et al. Electron injection into plasma wake fields by colliding laser pulses[J]. Physical Review Letters, 1997, 79(14): 2682-2685. doi: 10.1103/PhysRevLett.79.2682
|
[21] |
Schroeder C B, Lee P B, Wurtele J S, et al. Generation of ultra-short electron bunches by colliding laser pulses[J]. Physical Review E, 1999, 59: 6037-6047. doi: 10.1103/PhysRevE.59.6037
|
[22] |
Kotaki H, Masuda S, Kando M, et al. Head-on injection of a high quality electron beam by the interaction of two laser pulses[J]. Physics of Plasmas, 2004, 11(9): 4539-4539. doi: 10.1063/1.1775802
|
[23] |
Fubiani G, Esarey E, Schroeder C B, et al. Beat wave injection of electrons into plasma waves using two interfering laser pulses[J]. Physical Review E, 2004, 70: 016402. doi: 10.1103/PhysRevE.70.016402
|
[24] |
Sheng Z M, Mima K, Zhang J, et al. Efficient acceleration of electrons with counterpropagating intense laser pulses in vacuum and underdense plasma[J]. Physical Review E, 2004, 69: 016407. doi: 10.1103/PhysRevE.69.016407
|
[25] |
Faure J, Rechatin C, Norlin A, et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses[J]. Nature, 2006, 444(7120): 737-739. doi: 10.1038/nature05393
|
[26] |
Rechatin C, Faure J, Lifschitz A, et al. Quasi-monoenergetic electron beams produced by colliding cross-polarized laser pulses in underdense plasmas[J]. New Journal of Physics, 2009, 11: 013011. doi: 10.1088/1367-2630/11/1/013011
|
[27] |
Davoine X, Lefebvre E, Rechatin C, et al. Cold optical injection producing monoenergetic, multi-GeV electron bunches[J]. Physical Review Letters, 2009, 102: 065001. doi: 10.1103/PhysRevLett.102.065001
|
[28] |
Beck A, Davoine X, Lefebvre E. Scaling laws for electron cold injection in the narrow collision pulse approximation[J]. New Journal of Physics, 2011, 13(9): 093016. doi: 10.1088/1367-2630/13/9/093016
|
[29] |
Wang W M, Sheng Z M. Effect of laser parameters on electron injection into laser wakefields in plasma with a counterpropagating additional laser pulse[J]. Physics of Plasmas, 2008, 15: 13101. doi: 10.1063/1.2825671
|
[30] |
Rechatin C, Faure J, Ben-Ismail A, et al. Controlling the phase-space volume of injected electrons in a laser-plasma accelerator[J]. Physical Review Letters, 2009, 102: 164801. doi: 10.1103/PhysRevLett.102.164801
|
[31] |
Deng Z G, Yang L, Zhou C T, et al. Dual effects of stochastic heating on electron injection in laser wakefield acceleration[J]. Physics of Plasmas, 2014, 21: 083103. doi: 10.1063/1.4892262
|
[32] |
Lehe R, Lifschitz A F, Davoine X, et al. Optical transverse injection in laser-plasma acceleration[J]. Physical Review Letters, 2013, 111: 085005. doi: 10.1103/PhysRevLett.111.085005
|
[33] |
Cormier-Michel E, Ranjbar V, Bruhwiler D, et al. Design principles for high quality electron beams via colliding pulses in laser plasma accelerators[J]. Physical Review Special Topics—Accelerators and Beams, 2014, 17: 091301. doi: 10.1103/PhysRevSTAB.17.091301
|
[34] |
Deng Z G, Zhang Z M, Zhang B, et al. Large-charge quasimonoenergetic electron beams produced by off-axis colliding laser pulses in underdense plasma[J]. Physical Review E, 2017, 95(2/1): 023206.
|
[35] |
Rechatin C, Faure J, Lifschitz A, et al. Plasma wake inhibition at the collision of two laser pulses in an underdense plasma[J]. Physics of Plasmas, 2007, 14: 060702. doi: 10.1063/1.2741387
|
[36] |
Tzoufras M, Lu W, Tsung F S, et al. Beam loading in the nonlinear regime of plasma-based acceleration[J]. Physical Review Letters, 2008, 101: 145002. doi: 10.1103/PhysRevLett.101.145002
|
[37] |
Rechatin C, Faure J, Davoine X, et al. Characterization of the beam loading effects in a laser plasma accelerator[J]. New Journal of Physics, 2010, 12: 045023. doi: 10.1088/1367-2630/12/4/045023
|
[38] |
Davoine X, Beck A, Lifschitz A, et al. Cold injection for electron wakefield acceleration[J]. New Journal of Physics, 2010, 12: 095010. doi: 10.1088/1367-2630/12/9/095010
|
[39] |
Lu W, Huang C, Zhou M, et al. Nonlinear theory for relativistic plasma wakefields in the blowout regime[J]. Physical Review Letters, 2006, 96: 165002. doi: 10.1103/PhysRevLett.96.165002
|
[40] |
Esarey E, Pilloff M. Trapping and acceleration in nonlinear plasma waves[J]. Physics of Plasmas, 1995, 2(5): 1432-1436. doi: 10.1063/1.871358
|
[41] |
Kostyukov I, Pukhov A, Kiselev S. Phenomenological theory of laser-plasma interaction in "bubble" regime[J]. Physics of Plasmas, 2004, 11(11): 5256-5264. doi: 10.1063/1.1799371
|
[1] | Gao Guodong, Tang Xuhui, Cao Jianshe, Du Yaoyao, Liu Zhi, Ye Qiang, Ma Huizhou, Sui Yanfeng, Yue Junhui, He Jun, Ji Daheng, Yang Jing, Li Yukun, Wei Shujun. Signal-to-noise ratio requirement analysis for digital beam position monitor system[J]. High Power Laser and Particle Beams, 2022, 34(6): 064001. doi: 10.11884/HPLPB202234.210522 |
[2] | Lu Xicheng, Qiu Yang, Jiang Ling, Wang Haibo, Tian Jin, Guo Xinwei. Time reversal cavity path and its influence on signal to noise ratio[J]. High Power Laser and Particle Beams, 2021, 33(12): 123006. doi: 10.11884/HPLPB202133.210171 |
[3] | Zhang Jianzhu, Zhang Feizhou, Wu Yi. Comprehensive analysis of angle and focal anisoplanatism of turbulent atmosphere for laser guide star[J]. High Power Laser and Particle Beams, 2014, 26(03): 031017. doi: 10.3788/HPLPB201426.031017 |
[4] | Tan Bitao, Chen Hongbin, Wang Qunshu, Guan Xiaowei. Evaluation on detecting ability of electro-optical systems to space targets[J]. High Power Laser and Particle Beams, 2014, 26(01): 011013. doi: 10.3788/HPLPB201426.011013 |
[5] | Xiang Ningjing, Wu Zhensen, Hua Xuexia, Wang Mingjun. Statistical properties of Gaussian-Schell beam from diffuse target in turbulent atmosphere[J]. High Power Laser and Particle Beams, 2014, 26(02): 021003. doi: 10.3788/HPLPB201426.021003 |
[6] | Zeng Bing, Ye Rong, Zhang Bin, Sun Nianchun, Sui Zhan. Improving signal-to-noise ratio of chirped laser pulse using Mach-Zehnder interferometer[J]. High Power Laser and Particle Beams, 2013, 25(11): 2788-2792. doi: 10.3788/HPLPB20132511.2788 |
[7] | Cao Yudong. Design for in-line phase contrast imaging system based on signal to noise ratio[J]. High Power Laser and Particle Beams, 2013, 25(04): 1021-1025. |
[8] | Zeng Xiangmei, Duan Zuoliang, Chang Lingying, Zhang Meizhi. Spectral characteristics of chirped pulsed Gaussian beams propagating in turbulent atmosphere[J]. High Power Laser and Particle Beams, 2013, 25(09): 2257-2261. doi: 10.3788/HPLPB20132509.2257 |
[9] | Li Zhengzhou, Zhang Yuehua, Zheng Wei, Tian Lei, Jin Gang. Infrared dim target track initiation method based on likelihood ratio test[J]. High Power Laser and Particle Beams, 2012, 24(01): 76-78. |
[10] | Zhang Ying, Sun Li, Huang Wanqing, Xie Na, Zhou Kainan, Zeng Xiaoming, Wang Xiaodong, Liu Lanqin, Zhu Qihua. Nonlinear Sagnac interferometry for improving signal-to-noise ratio of short pulse[J]. High Power Laser and Particle Beams, 2012, 24(07): 1737-1740. |
[11] | Xu Yiqing, Zhou Guoquan. Kurtosis parameter of partially coherent Lorentz-Gauss beam in turbulent atmosphere[J]. High Power Laser and Particle Beams, 2012, 24(02): 293-296. |
[12] | wang jiabin, liu yongxin, pu jixiong. Measuring scintillation index of laser beams propagating in turbulent atmosphere[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- . |
[13] | xu jiancheng, xu qiao. Statistical analysis of signal-to-noise ratio in interferometric imaging system[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- . |
[14] | qian wei-xin, wang wan-li, liu rui-gen. Image reconstruction algorithm based on constrained processing by partial differental equation for flash radiography[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- . |
[15] | liu hou-tong, li chao, wang zhen-zhu, huang wei, zhou jun. Analysis on eye safety of airborne atmosphere detection lidar and eye safety[J]. High Power Laser and Particle Beams, 2008, 20(03): 0- . |
[16] | wei he-li, chen xiu-hong, yu kai, tian yong-qing. Analysis of the detectable stellar magnitude limit using CCD camera in daytime sky background[J]. High Power Laser and Particle Beams, 2007, 19(02): 0- . |
[17] | qian xian-mei, zhu wen-yue, rao rui-zhong. Simulation of effects of beam wander on scintillation index of a focused Gaussian-beam[J]. High Power Laser and Particle Beams, 2007, 19(02): 0- . |
[18] | wang ke, qian lie-jia. Signal to noise ratio of ultrashort high-power pulse[J]. High Power Laser and Particle Beams, 2006, 18(01): 0- . |
[19] | liu jian-guo, huang yin-bo, wang ying-jian. Statistical properties of short-exposure images with strong turbulent effects[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- . |
[20] | wan min, su yi, yang rui, zheng jie, leng jie, zheng wei min, hu xiao yang. Improvement of signal to noise ratio in astronomical objects detection in daytime[J]. High Power Laser and Particle Beams, 2003, 15(12): 0- . |
1. | 蔡旭帆, 雷彬, 吕庆敖, 向红军, 张倩, 苑希超, 崔亮. 磁通压缩发生器研究进展综述. 兵器装备工程学报. 2019(09): 220-223+230 . ![]() | |
2. | 李红梅, 蒋文兴, 邓琳琳, 陈红. 射频爆磁压缩发生器小型化共形天线. 强激光与粒子束. 2017(11): 120-124 . ![]() |