Citation: | Han Jinhua, Guo Gang, Chen Qiming, et al. Quasi-monoenergetic neutron single event effects[J]. High Power Laser and Particle Beams, 2019, 31: 020201. doi: 10.11884/HPLPB201931.180254 |
[1] |
Petersen E. Single event effects in aerospace[M]. Hoboken, New Jersey: Wiley-IEEE Press, 2012: 48-57.
|
[2] |
Ziegler J F. Terrestrial cosmic ray intensities[J]. IBM Journal of Research and Development, 1998, 42(1): 125-139.
|
[3] |
Normand E, Baker T J. Altitude and latitude variations in avionics SEU and atmospheric neutron flux[J]. IEEE Transactions on Nuclear Science, 1993, 40(6): 1484-1490. doi: 10.1109/23.273514
|
[4] |
蔡明辉, 韩建伟, 李小银, 等. 临近空间大气中子环境的仿真研究[J]. 物理学报, 2009, 58(9): 6659-6664. doi: 10.3321/j.issn:1000-3290.2009.09.124
Cai Minghui, Han Jianwei, Li Xiaoyin, et al. A simulation study of the atmospheric neutron environment in near space. Acta Physica Sinica, 2009, 58(9): 6659-6664 doi: 10.3321/j.issn:1000-3290.2009.09.124
|
[5] |
Hands A, Dyer C S, Lei F. SEU rates in atmospheric environments: variations due to cross-section fits and environment models[J]. IEEE Transactions on Nuclear Science, 2009, 56(4): 2026-2034. doi: 10.1109/TNS.2009.2013466
|
[6] |
Normand E. Single event upset at ground level[J]. IEEE Transactions on Nuclear Science, 1996, 43(6): 2742-2750. doi: 10.1109/23.556861
|
[7] |
IEC TS 62396, Process management for avionics: atmospheric radiation effects-Part 1: accommodation of atmospheric radiation effects via single event effects within avionics electronic equipment[S].
|
[8] |
曹秀云. 临近空间飞行器成为各国近期研究的热点(上)[J]. 中国航天, 2006(6): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHT200606009.htm
Cao Xiuyun. Near space vehicles have become a hot research topic for several years in many countries (Ⅰ). Aerospace China, 2006(6): 32-36 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHT200606009.htm
|
[9] |
李怡勇, 李智, 沈怀荣. 临近空间飞行器发展与应用分析[J]. 装备指挥技术学院学报, 2008, 19(2): 61-65. doi: 10.3783/j.issn.1673-0127.2008.02.015
Li Yiyong, Li Zhi, Shen Huairong. Development and application analysis of near space vehicles. Journal of the Academy of Equipment Command & Technology, 2008, 19(2): 61-65 doi: 10.3783/j.issn.1673-0127.2008.02.015
|
[10] |
中村刚史, 马场首, 伊部英治, 等. 大气中子在先进存储器件中引起的软错误[M]. 北京: 国防工业出版社, 2015: 62-147.
Nakamura T, Ibe E, Kamayama H, et al. Terrestrial neutron-induced soft errors in advanced memory devices. Beijing: National Defense Industry Press, 2015: 62-147
|
[11] |
Autran J L, Roche P, Borel J, et al. Altitude SEE test European platform (ASTEP): project overview and first results in CMOS 130 nm and perspectives[J]. IEEE Transactions on Nuclear Science, 2007, 54(4): 1002-1009. doi: 10.1109/TNS.2007.891398
|
[12] |
King M P, Reed R A, Weller R A, et al. Electron-induced single-event upsets in static random access memory[J]. IEEE Transactions on Nuclear Science, 2013, 60(6): 4122-4129. doi: 10.1109/TNS.2013.2286523
|
[13] |
丁大钊, 叶春堂, 赵志祥, 等. 中子物理学(上册)[M]. 2版. 北京: 原子能出版社, 2005.
Ding Dazhao, Ye Chuntang, Zhao Zhixiang. Neutron Physics (Part Ⅰ). 2nd ed. Beijing: Atomic Energy Press, 2005
|
[14] |
Miller F, Weulersse C, Carriere T, et al. Investigation of 14 MeV neutron capabilities for SEU hardness evaluation[J]. IEEE Transactions on Nuclear Science, 2013, 60(4): 2789-2796. doi: 10.1109/TNS.2013.2241078
|
[15] |
Gasiot G, Ferlet-Cavrois V, Baggio J, et al. SEU sensitivity of bulk and SOI technologies to 14-MeV neutrons[J]. IEEE Transactions on Nuclear Science, 2002, 49(6): 3032-3037. doi: 10.1109/TNS.2002.805395
|
[16] |
范辉, 郭刚, 沈东军, 等. 14 MeV中子引发SRAM器件单粒子效应实验研究[J]. 原子能科学技术, 2015, 49(1): 171-175. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201501029.htm
Fan Hui, Guo Gang, Shen Dongjun, et al. Experimental study on 14 MeV neutron induced single-event-effect in SRAMs. Atomic Energy Science and Technology, 2015, 49(1): 171-175 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201501029.htm
|
[17] |
JEDEC Standard, no. 89, Measurement and reporting of alpha particles and terrestrial cosmic ray-induced soft errors in semiconductor devices[S]. 2001.
|
[18] |
Baba M. Quasi-monoenergetic neutron sources[C]//Proc Sci Syrmp on Fast Neutron Detection and Its Application (FNDA). 2006: 1-10.
|
[19] |
Baba M, Nauchi Y, Iwasaki T, et al. Characterization of a 40-90 MeV 7Li(p, n) neutron source at TIARA using a proton recoil telescope and a TOF method[J]. Nuclear Instruments & Methods in Physics Research, 1999, 428(2/3): 454-465.
|
[20] |
Watson J W, Pourang R, Abegg R, et al. 7Li(p, n)7Be and 12C(p, n)12N reactions at 200, 300, and 400 MeV[J]. Physical Review C, 1989, 40(1): 22-26. doi: 10.1103/PhysRevC.40.22
|
[21] |
Nakao N, Kurosawa T, Nakamura T, et al. Development of a quasi-monoenergetic neutron field and measurements of the response function of an organic liquid scintillator for the neutron energy range from 66 to 206 MeV[J]. Nuclear Instruments & Methods in Physics Research A, 2002, 476(1): 176-180.
|
[22] |
Baba M, Okamura H, Hagiwara M, et al. Installation and application of an intense 7Li(p, n) neutron source for 20-90 MeV region[J]. Radiation Protection Dosimetry, 2007, 126(1/4): 13-17.
|
[23] |
Mashnik S G, Chadwick M B, Hughes H G, et al. 7-Li(p, n) nuclear data library for incident proton energies to 150 MeV[R]. LA-UR-00-1067, 2000.
|
[24] |
Koning A J, Hilaire S, Duijvestijn M C. TALYS: Comprehensive nuclear reaction modeling[C]//American Institute of Physics. 2005: 1154-1159.
|
[25] |
Agostinelli S, Allison J, Amako K, et al. Geant4—a simulation toolkit[J]. Nuclear Instruments & Methods in Physics Research, 2003, 506(3): 250-303.
|
[26] |
Ferrari A, Sala P R, Fasso A, et al. FLUKA: A multi-particle transport code[J]. Lancet, 2005, 7740: 44-45.
|
[27] |
Prokofiev A, Chadwick M, Mashnik S, et al. Development and validation of the 7Li(p, n) nuclear data library and its application in monitoring of intermediate energy neutrons[J]. Journal of Nuclear Science & Technology, 2002, 39(s2): 112-115.
|
[28] |
Hashimoto S, Iwamoto O, Iwamoto Y, et al. PHITS simulation of quasi-monoenergetic neutron sources from 7Li(p, n) reactions[J]. Energy Procedia, 2015, 71: 191-196.
|
[29] |
Taddeucci T N, Goulding C A, Carey T A, et al. The (p, n) reaction as a probe of beta decay strength[J]. Nuclear Physics, 1987, 469(1): 125-172.
|
[30] |
Uwamino Y, Soewarsono T S, Sugita H, et al. High-energy p-Li neutron field for activation experiment[J]. Nuclear Instruments & Methods in Physics Research A, 1997, 389(3): 463-473.
|
[31] |
Ohlsen G G. Kinematic relations in reactions of the form A+B→C+D+E[J]. Nuclear Instruments & Methods, 1965, 37(2): 240-248.
|
[32] |
Young P G, Arthur E D, Chadwick M B. Comprehensive nuclear model calculations: introduction to the theory and use of the GNASH code[J]. 1992.
|
[33] |
Mashnik S G, Bull J S. MCNP6 simulation of quasi-monoenergetic 7Li(p, n) neutron sources below 150 MeV[J]. Nuclear Data Sheets, 2014, 118(1): 323-325.
|
[34] |
Schuhmacher H, Brede H J, Dangendorf V, et al. Quasi-monoenergetic neutron beams with energies from 25 to 70 MeV[J]. Nuclear Instruments & Methods in Physics Research, 1999, 421(1/2): 284-295.
|
[35] |
Nakao N, Nakamura T, Baba M, et al. Measurements of response function of organic liquid scintillator for neutron energy range up to 135 MeV[J]. Nuclear Instruments & Methods in Physics Research, 1995, 362(2/3): 454-465.
|
[36] |
Meigo S. Measurements of the response function and the detection efficiency of an NE213 scintillator for neutrons between 20 and 65 MeV[J]. Nuclear Instruments & Methods in Physics Research, 1997, 401(2/3): 365-378.
|
[37] |
Nakao N, Uwamino Y, Nakamura T, et al. Development of a quasi-monoenergetic neutron field using the 7Li(p, n)7Be reaction in the 70-210 MeV energy range at RIKEN[J]. Instruments & Methods in Physics Research, 1999, 420(1/2): 218-231.
|
[38] |
Bedogni R, Domingo C, Amgarou K, et al. Spectrometry of 50 and 100 MeV quasi monochromatic neutron fields with extended range Bonner spheres[J]. Nuclear Instruments & Methods in Physics Research A, 2014, 746(9): 59-63.
|
[39] |
Shikaze Y, Tanimura Y, Saegusa J, et al. Investigation of properties of the TIARA neutron beam facility of importance for calibration applications[J]. Radiation Protection Dosimetry, 2007, 126(1/4): 163-167.
|
[40] |
李春娟, 陈军, 王志强, 等. (20~400)MeV准单能中子参考辐射场的建立方法[J]. 宇航计测技术, 2013, 33(5): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YHJJ201305014.htm
Li Chunjuan, Chen Jun, Wang Zhiqiang, et al. Quasi-monoenergetic neutron reference fields with energies from 20 MeV to 400 MeV. Journal of Astronautic Metrology and Measurement, 2013, 33(5): 62-67 https://www.cnki.com.cn/Article/CJFDTOTAL-YHJJ201305014.htm
|
[41] |
Pomp S, Prokofiev A V, Blomgren J, et al. The new Uppsala neutron beam facility[C]//AIP Conference. 2005: 780-783.
|
[42] |
Fang Y P, Oates A S. Thermal neutron-induced soft errors in advanced memory and logic devices[J]. IEEE Transactions on Device & Materials Reliability, 2014, 14(1): 583-586.
|
[43] |
Prokofiev A V, Blomgren J, Platt S P, et al. ANITA—a new neutron facility for accelerated SEE testing at the Svedberg Laboratory[C]//IEEE International Reliability Physics Symposium. 2009: 929-935.
|
[44] |
Dyer C S, Clucas S N, Sanderson C, et al. An experimental study of single-event effects induced in commercial SRAMs by neutrons and protons from thermal energies to 500 MeV[J]. IEEE Transactions on Nuclear Science, 2004, 51(5): 2817-2824.
|
[45] |
Johansson K, Dyreklev P, Granbom B, et al. Energy-resolved neutron SEU measurements from 22 to 160 MeV[J]. IEEE Transactions on Nuclear Science, 2002, 45(6): 2519-2526.
|
[46] |
Lambert D, Baggio J, Hubert G, et al. Analysis of quasi-monoenergetic neutron and proton SEU cross sections for terrestrial applications[J]. IEEE Transactions on Nuclear Science, 2006, 53(4): 1890-1896.
|
[47] |
Granlund T, Granbom B, Olsson N. A comparative study between two neutron facilities regarding SEU[J]. IEEE Transactions on Nuclear Science, 2004, 51(5): 493-497.
|
[48] |
Petersen E L, Pickel J C, Smith E C, et al. Geometrical factors in SEE rate calculations[J]. IEEE Transactions on Nuclear Science, 1993, 40(6): 1888-1909.
|
[49] |
Nolte R, Allie M S, Binns P J, et al. High-energy neutron reference fields for the calibration of detectors used in neutron spectrometry[J]. Nuclear Instruments & Methods in Physics Research A, 2002, 476(1/2): 369-373.
|