Bing Feng, Pan Weimin, Huang Tongming, et al. Design of variable fundamental power coupler[J]. High Power Laser and Particle Beams, 2019, 31: 053003. doi: 10.11884/HPLPB201931.180258
Citation: Bing Feng, Pan Weimin, Huang Tongming, et al. Design of variable fundamental power coupler[J]. High Power Laser and Particle Beams, 2019, 31: 053003. doi: 10.11884/HPLPB201931.180258

Design of variable fundamental power coupler

doi: 10.11884/HPLPB201931.180258
  • Received Date: 2018-10-08
  • Rev Recd Date: 2019-02-22
  • Publish Date: 2019-05-15
  • This paper aims to design a new 650MHz variable fundamental power coupler. The external quality factor Qe ranges from 1.5×105 to 2×106 to meet the requirements of different current modes of the Beam Test Facility of PAPS (Platform of Advanced Photon Source Technology R&D). This is the first time to develop a variable continuous wave type power coupler in China. In this paper, the RF transmission and field distribution of the coupler are calculated by HFSS three-dimensional electromagnetic software. The external quality factor at different antenna penetration depth is simulated by CST microwave studio. The penetration depth adjusting experiment is carried out by integrating with a 650 MHz 2-cell superconducting cavity. The simulated and measured results of Qe agree well with each other.
  • [1]
    Belomestnykh S. Overview of input power coupler developments, pulsed and CW[C]//Proceedings of 13th International Workshop on RF Superconductivity. 2007.
    [2]
    Kindermann, H P, Stirbet M. The variable power coupler for the LHC superconducting cavity[R]. CERN-SL-99-074-HRF, 2000.
    [3]
    Belomestnykh S. Review of high power CW couplers for superconducting cavities[C]//Proceedings of the Workshop on High-Power Couplers for Superconducting Accelerators. 2002.
    [4]
    Knobloch J, Anders W, Martin M, et al. CW operation of the TTF-Ⅲ input coupler[C]//Proceedings of the 2005 Particle Accelerator Conference. 2005: 3292-3294.
    [5]
    Kindermann H P, Veshcherevich V G, Stirbet M, et al. Status of RF power couplers for superconducting cavities at CERN[R]. CERN-SL-96-026-RF.
    [6]
    Schmierer E N, Haynes W B, Krawczyk F L, et al. Results of the APT RF power coupler development for superconducting linacs[C]//Proceedings of the 2001 Particle Accelerator Conference. 2001: 1110-1112.
    [7]
    Huang Tongming, Pan Weimin, Ma Qiang, et al. High power input coupler development for BEPCⅡ 500 MHz superconducting cavity[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 623(3): 895-902. doi: 10.1016/j.nima.2010.08.108
    [8]
    黄彤明. 超导腔高功率输入耦合器的研究[D]. 北京: 中国科学院大学, 2009: 14-61.

    Huang Tongming. Study of high power input power coupler for superconducting cavity. Beijing: Graduate University of Chinese Academy of Sciences, 2009: 14-61
    [9]
    Xu Wencan, Altinbas Z, Belomestnykh S, et al. Design, simulations, and conditioning of 500 kW fundamental power couplers for a superconducting RF gun[J]. Physical Review Special Topics—Accelerators and Beams, 2012, 15: 072001. doi: 10.1103/PhysRevSTAB.15.072001
    [10]
    D'Elia A. Design and characterization of the power coupler line for HIE-ISOLDE high beta cavity[R]. HIE-ISOLDE-Project-Note-0011, 2011.
  • Relative Articles

    [1]Yang Wenyuan, Dong Zhiwei, Dong Ye, Zhou Qianhong. Numerical study on high frequency characteristics of slow plasma wave in cylindrical waveguide loaded with annular plasma beam[J]. High Power Laser and Particle Beams, 2024, 36(4): 043030. doi: 10.11884/HPLPB202436.230275
    [2]Wu Wei, Wang Haiyang, Wu Gang, Zhu Xiangqin, Xiao Jing, Cheng Le. Preliminary experimental investigation of field distribution characteristics in horizontally polarized bounded-wave EMP simulator with 9.5 m in height[J]. High Power Laser and Particle Beams, 2021, 33(4): 043005. doi: 10.11884/HPLPB202133.200303
    [3]Wang Xian, Zhang Dewei, Wang Shuxing, Lü Dalong, Zhang Yi. Characteristic analysis of folded HMSIW and implements in equalizers and filters[J]. High Power Laser and Particle Beams, 2019, 31(9): 093206. doi: 10.11884/HPLPB201931.190134
    [4]Xiong Zhengfeng, Ning Hui, Chen Huaibi, Cheng Cheng. Design and experiment of microwave pulse compressor with adjustable coupling coefficient[J]. High Power Laser and Particle Beams, 2018, 30(7): 073001. doi: 10.11884/HPLPB201830.170469
    [5]Ye Mao, Zhang Huang, Liu Yi, Wang Wei, Chen Yi, Yang Chao, Xia Liansheng, Shi Jinshui, Zhang Linwen. Optimization of accelerating structure in dielectric wall accelerator[J]. High Power Laser and Particle Beams, 2016, 28(04): 045101. doi: 10.11884/HPLPB201628.125101
    [6]Li Hongyi, Guo Chunying, Xu Wei, Lin Yuangen. Equivalent calculation between coupling responses of electromagnetic fields from radiating-wave simulators and actual environment[J]. High Power Laser and Particle Beams, 2016, 28(02): 025002. doi: 10.11884/HPLPB201628.025002
    [7]Zhang Guowei, Wang Haiyang, Chen Weiqing, Xie Linshen, Wang Wei, Yang Tian, He Xiaoping. Experimental study on propagation properties of 60 m×20 m×10 m TEM antennas[J]. High Power Laser and Particle Beams, 2015, 27(06): 063202. doi: 10.11884/HPLPB201527.063202
    [8]Cao Xuejun, Ma Hongge, Ye Hong. Numerical analysis of time-domain response for building under oblique incidence of spherical electromagnetic wave[J]. High Power Laser and Particle Beams, 2014, 26(07): 073209. doi: 10.11884/HPLPB201426.073209
    [9]Chen Xu, Gu Kuixiang, Peng Yinghua, Ma Qiang, Huang Tongming, Lin Haiying, Pan Weimin, . Copper layer thickness for 325 MHz superconducting cavity input couplers[J]. High Power Laser and Particle Beams, 2014, 26(12): 125103. doi: 10.11884/HPLPB201426.125103
    [10]Li Jisan, Wang Yong, Liu Wenxin. Resonant frequency computation of waveguide loaded cavity with boundary element method[J]. High Power Laser and Particle Beams, 2012, 24(01): 3-4.
    [11]zhang hui, li tianming, hu biao. Propagation characteristics of peniotron coaxial waveguide with inner and outer slotted structure[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [12]kong long, liu qingxiang, li xiangqiang, zhang jianqiong. High frequency characteristics of coaxial boundary-loaded resonator with three cavities[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [13]cao xuejun, ma hongge. Numerical analysis of time-domain response for building to different electromagnetic pulses[J]. High Power Laser and Particle Beams, 2009, 21(07): 0- .
    [14]xie yong-chao, zhang shi-chang, ding xue-yong. Effects of structural misalignments on open coaxial resonator performance[J]. High Power Laser and Particle Beams, 2008, 20(11): 0- .
    [15]lei lu-rong, fan zhi-kai, he hu, huang hua. High frequency characteristics of double-gap output cavity[J]. High Power Laser and Particle Beams, 2007, 19(10): 0- .
    [16]tang ping ying, ding bo nan, dai jing yi. Characteristics of RF ion source electromagnetic field[J]. High Power Laser and Particle Beams, 2003, 15(09): 0- .
    [17]jin xiao, xu zhou, zhou chuan-ming. Coupling parameter study of superconducting cavity coupler[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- .
    [18]fan zhi-kai, liu qing-xiang, cui xue-fang. Analysis on the high frequency characteristics of the double-gap resonator[J]. High Power Laser and Particle Beams, 2001, 13(01): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.0 %FULLTEXT: 24.0 %META: 72.6 %META: 72.6 %PDF: 3.4 %PDF: 3.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.2 %其他: 6.2 %其他: 0.1 %其他: 0.1 %China: 0.4 %China: 0.4 %Doylestown: 0.3 %Doylestown: 0.3 %India: 0.1 %India: 0.1 %Malvern: 0.1 %Malvern: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United Kingdom: 0.1 %United Kingdom: 0.1 %United States: 0.1 %United States: 0.1 %[]: 0.7 %[]: 0.7 %三亚: 0.1 %三亚: 0.1 %上海: 1.6 %上海: 1.6 %东莞: 0.5 %东莞: 0.5 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %兰州: 0.1 %兰州: 0.1 %内江: 0.1 %内江: 0.1 %北京: 17.6 %北京: 17.6 %北海: 0.1 %北海: 0.1 %十堰: 0.1 %十堰: 0.1 %南京: 1.7 %南京: 1.7 %南宁: 0.1 %南宁: 0.1 %南平: 0.2 %南平: 0.2 %南通: 0.2 %南通: 0.2 %台州: 1.0 %台州: 1.0 %合肥: 0.3 %合肥: 0.3 %哥伦布: 0.1 %哥伦布: 0.1 %喀什: 0.1 %喀什: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 0.7 %天津: 0.7 %宣城: 0.3 %宣城: 0.3 %宿迁: 0.1 %宿迁: 0.1 %巴中: 0.1 %巴中: 0.1 %常州: 0.3 %常州: 0.3 %广州: 1.4 %广州: 1.4 %张家口: 0.1 %张家口: 0.1 %德州: 0.1 %德州: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 0.3 %成都: 0.3 %扬州: 0.5 %扬州: 0.5 %新乡: 0.5 %新乡: 0.5 %昆明: 0.2 %昆明: 0.2 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.0 %杭州: 1.0 %梅克伦堡-前波美拉尼亚: 0.3 %梅克伦堡-前波美拉尼亚: 0.3 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.1 %洛阳: 0.1 %深圳: 0.9 %深圳: 0.9 %温州: 0.3 %温州: 0.3 %湖州: 1.0 %湖州: 1.0 %漯河: 1.4 %漯河: 1.4 %潜江: 0.1 %潜江: 0.1 %石嘴山: 0.1 %石嘴山: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 17.2 %芒廷维尤: 17.2 %芜湖: 0.1 %芜湖: 0.1 %芝加哥: 0.1 %芝加哥: 0.1 %衢州: 0.5 %衢州: 0.5 %西宁: 35.5 %西宁: 35.5 %西安: 0.1 %西安: 0.1 %贵港: 0.3 %贵港: 0.3 %贵阳: 0.1 %贵阳: 0.1 %达州: 0.1 %达州: 0.1 %运城: 0.6 %运城: 0.6 %连云港: 0.1 %连云港: 0.1 %郑州: 1.1 %郑州: 1.1 %重庆: 0.8 %重庆: 0.8 %镇江: 0.1 %镇江: 0.1 %长沙: 0.4 %长沙: 0.4 %长治: 0.1 %长治: 0.1 %阿姆斯特丹: 0.1 %阿姆斯特丹: 0.1 %阿穆达巴: 0.3 %阿穆达巴: 0.3 %青岛: 0.2 %青岛: 0.2 %韩国大邱: 0.1 %韩国大邱: 0.1 %其他其他ChinaDoylestownIndiaMalvernTaiwan, ChinaUnited KingdomUnited States[]三亚上海东莞中山临汾丹东兰州内江北京北海十堰南京南宁南平南通台州合肥哥伦布喀什嘉兴天津宣城宿迁巴中常州广州张家口德州惠州成都扬州新乡昆明晋城普洱杭州梅克伦堡-前波美拉尼亚武汉沈阳洛阳深圳温州湖州漯河潜江石嘴山秦皇岛芒廷维尤芜湖芝加哥衢州西宁西安贵港贵阳达州运城连云港郑州重庆镇江长沙长治阿姆斯特丹阿穆达巴青岛韩国大邱

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (1438) PDF downloads(124) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return