Peng Yi, Zhang Jingyu, Chen Yixue. Application of improved transmutation trajectory analysis in neutron activation calculation[J]. High Power Laser and Particle Beams, 2017, 29: 036018. doi: 10.11884/HPLPB201729.160194
Citation: Yu Xinhua, Ye Shuntao, Fu Wenjie, et al. Design of high-order rotatingmode generator with helically-distributed perforation[J]. High Power Laser and Particle Beams, 2019, 31: 083001. doi: 10.11884/HPLPB201931.180277

Design of high-order rotatingmode generator with helically-distributed perforation

doi: 10.11884/HPLPB201931.180277
Funds:

National Natural Science Foundation of China 61561013

the Guangxi Natural Science Fund of China 2015GXNSFAA139305

the Dean Project of Guangxi Key Lab of Wireless Wide-band Communication and Signal Processing GXKL06170102

the THz Sci. & Tech.Key Lab of Sichuan Province Foundation THZSC201701

More Information
  • Author Bio:

    Yu Xinhua(1969—), male, PhD, engaged in electromagnetic wave transmission lines and microwave antenna research; yusilian@126.com

  • Corresponding author: Ye Shuntao(1992—), male, Master, engaged in electromagnetic wave transmission lines and microwave antenna research; yeshuntao@126.com
  • Received Date: 2018-10-21
  • Rev Recd Date: 2019-03-10
  • Publish Date: 2019-08-15
  • For the shortcomings of unknown mode purity and apparently ambiguous design idea in the literature (Danilov, 2007), an improved rotating high-order mode generator based on the helically-distributed perforation (HDP) technique is presented to realize high purity conversion of coaxial TE1, 1 mode to circular TE5, 3 mode.According to the inhomogeneous string equation, the optimal configurations of the coaxial cavity are obtained by the numerical calculation so that the required mode can effectively resonate.Based on the pinhole diffraction theory and the electric field boundary conditions on the surface of the perfect electric conductor (PEC), the arrangement of HDP and the working principle of the mode suppressor are studied in detail.Numerical calculations and simulation results indicate that the mode purity of TE5, 3 mode generator is as high as 97.4%, and the conversion efficiency is 96.1% near the center frequency of 30 GHz.Compared with its old version, the generator has the obvious advantages of high mode purity and compactness.
  • [1]
    Danilov Y Y. Experimental study of a perforated coaxial exciter of high-order modes in a barrel-shaped cavity[J]. Technical Physics Letters, 2007, 33(9): 738-739. doi: 10.1134/S1063785007090076
    [2]
    Nguyen K T, Levush B, Antonsen T M, et al. Modeling of gyroklystrons with MAGY[J]. IEEE Trans Plasma Science, 2000, 28(3): 867-886. doi: 10.1109/27.887741
    [3]
    Jory H, Wagner D, Blank M, et al. Compact mode converter system for the cold test of assembled gyrotrons[J]. International Journal of Infrared and Millimeter Waves, 2001, 22(10): 1395-1407. doi: 10.1023/A:1015053621109
    [4]
    Zaitsev N I, Kulagin I S, Kuzikov S V, et al. Microwave components for 30 GHz high-power gyroklystron[C]//IEEE International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). 2008: 369-370.
    [5]
    Thumm M, Yang X, Arnold A, et al. A high-efficiency quasi-optical mode converter for a 140-GHz 1-MW CW gyrotron[J]. IEEE Trans Electron Devices, 2005, 52(5): 818-824. doi: 10.1109/TED.2005.845791
    [6]
    Liu Jianwei, Zhao Qing, Li Hongfu. Design of quasi-optical mode converter for 94 GHz gyrotron[C]//IEEE International Conference on Electronic Measurement and Instruments. 2014: 151-153.
    [7]
    Aleksandrov N L, Chirkov A V, Denisov G G, et al. Selective excitation of high-order modes in circular waveguides[J]. International Journal of Infrared and Millimeter Waves, 1992, 13(9): 1369-1385. doi: 10.1007/BF01009994
    [8]
    Alexandrov N L, Denisov G G, Whaley D R, et al. Low-power excitation of gyrotron-type modes in a cylindrical waveguide using quasi-optical techniques[J]. International Journal of Electronics, 1995, 79(2): 215-226. doi: 10.1080/00207219508926263
    [9]
    Shen Wenyuan, Wang Hu, Geng Zhihui, et al. Study on TE62 mode exciter of circular waveguide based on the waveguide mode transformation[J]. Acta Physica Sinica, 2013, 62(23): 425-431.
    [10]
    Bogdashov A A, Golov M Y, Danilov Y Y, et al. Perforated coaxial exciter of the higher-order mode of a barrel-shaped cavity[J]. Radiophysics and Quantum Electronics, 2006, 49(8): 605-611. doi: 10.1007/s11141-006-0094-1
    [11]
    Pereyaslavets M, Braz O, Kern S, et al. Improvements of mode converters for low-power excitation of gyrotron-type modes[J]. International Journal of Electronics, 1997, 82(1): 107-116. doi: 10.1080/002072197136291
    [12]
    Yu Xinhua, Ye Shuntao, Cao Weiping, et al. An improved type of TE11 mode circular polarizer[C]//IEEE International Symposium on Antennas, Propagation and EM Theory. 2017: 828-829.
  • Relative Articles

    [1]Wang Xiangyu, Lu Yanlei, Zhu Yufeng, Fang Xu, Qiao Hanqing, Zhang Xingjia. Design and development of compact high power subnanosecond pulse compression device[J]. High Power Laser and Particle Beams, 2023, 35(2): 025006. doi: 10.11884/HPLPB202335.220254
    [2]Lian Yudong, Wang Yuhe, Zhang Yuqin, Han Shiwei, Yu Yang, Qi Xuan, Luan Nannan, Bai Zhenxu, Wang Yulei, Lü Zhiwei. Research progress of stimulated Brillouin scattering pulse compression technique[J]. High Power Laser and Particle Beams, 2021, 33(5): 051001. doi: 10.11884/HPLPB202133.210006
    [3]Zhang Xingjia, Lu Yanlei, Fan Yajun, Shi Lei, Xia Wenfeng, Qiao Hanqing. Triple transmission line type subnanosecond pulse-compression device[J]. High Power Laser and Particle Beams, 2017, 29(11): 115002. doi: 10.11884/HPLPB201729.170101
    [4]Shi Lei, Zhu Yufeng, Lu Yanlei, Xia Wenfeng, Qiao Hanqing, Yi Chaolong, Fan Yajun. Pulse compression based on pulse forming line charging techonlogy[J]. High Power Laser and Particle Beams, 2015, 27(06): 065003. doi: 10.11884/HPLPB201527.065003
    [5]Xiong Zhengfeng, Ning Hui, Chen Huaibi, Tang Chuanxiang. Design of compact power combiner in rectangular waveguide[J]. High Power Laser and Particle Beams, 2014, 26(06): 063013. doi: 10.11884/HPLPB201426.063013
    [6]Bai Zhen, Li Guolin, Zhang Jun. X-band high power microwave mode-selective directional coupler[J]. High Power Laser and Particle Beams, 2013, 25(07): 1747-1750. doi: 10.3788/HPLPB20132507.1747
    [7]Zhu Yufeng, Shi Lei, Fan Yajun, Xia Wenfeng. Application of forming-line pulse-compression in ultra-wide-spectrum technology[J]. High Power Laser and Particle Beams, 2013, 25(09): 2448-2452. doi: 10.3788/HPLPB20132509.2448
    [8]liang qinjin, shi xiaoyan, pan wenwu. High voltage semiconductor fast ionization device and its properties of pulse compression[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [9]zhong shaopeng, zhao minghua, wang baoliang. Design and test of sub-harmonic cavity's coupler for 150 MeV linac of Shanghai synchrotron radiation facility[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- .
    [10]guo qi, lü zhiwei, zhu chengyu. High-quality pulse shape realized in two-step stimulated Brillouin scattering pulse compression system[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [11]gao zhixing, tang xiuzhang, zhang haifeng, xiang yihuai. Excimer laser pulse compressed with pulse feedback[J]. High Power Laser and Particle Beams, 2009, 21(08): 0- .
    [12]shi de-wan, wang wen-xiang, gong yu-bin, wei yan-yu. Solution of field distribution in stripline directional coupler[J]. High Power Laser and Particle Beams, 2007, 19(06): 0- .
    [13]zhang zhi-qiang, fang jin-yong, hao wen-xi, qiu shi, ning hui. Numerical simulation and optimization design of X-band pulse compression equipment[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [14]liu wen-bing, zhu qi-hua, feng guo-ying, wang xiao, wang fang. Effects of non-parallel grating pair on pulse space-time profiles[J]. High Power Laser and Particle Beams, 2005, 17(10): 0- .
    [15]xie su-long, meng fan-bao, ma hong-ge. Effects of gas switch on power gain in pulse compressed system[J]. High Power Laser and Particle Beams, 2005, 17(06): 0- .
    [16]zhang wei, wu jian-hong, li chao-ming. Effect of wavefront aberration of grating on pulse compression[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- .
    [17]wang chao, lzhi-wei, he wei-ming. Picosecond pulse generation by stimulated Brillouin scattering compressor[J]. High Power Laser and Particle Beams, 2003, 15(12): 0- .
    [18]ning hui, fang jin-yong, li ping, liu jing-yue, liu guo-zhi, xiao li-lin, tong de-chun, lin yu-zheng, . Experiment research on HPM pulse compression[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- .
  • Cited by

    Periodical cited type(1)

    1. 白维达, 江涛, 熊正锋, 蒋自力. S波段高精度快速倒相开关设计. 强激光与粒子束. 2020(05): 47-50 . 本站查看

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.6 %FULLTEXT: 25.6 %META: 70.7 %META: 70.7 %PDF: 3.7 %PDF: 3.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.9 %其他: 7.9 %其他: 0.5 %其他: 0.5 %China: 0.7 %China: 0.7 %India: 0.1 %India: 0.1 %Korea Republic of: 0.2 %Korea Republic of: 0.2 %Pakistan: 0.5 %Pakistan: 0.5 %Switzerland: 0.1 %Switzerland: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.1 %United States: 0.1 %[]: 2.0 %[]: 2.0 %上海: 0.7 %上海: 0.7 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %内江: 0.1 %内江: 0.1 %北京: 14.0 %北京: 14.0 %十堰: 0.1 %十堰: 0.1 %南京: 0.3 %南京: 0.3 %南平: 0.1 %南平: 0.1 %南通: 0.2 %南通: 0.2 %卢布林: 0.3 %卢布林: 0.3 %台北: 0.1 %台北: 0.1 %台州: 0.5 %台州: 0.5 %合肥: 0.2 %合肥: 0.2 %咸阳: 0.3 %咸阳: 0.3 %哈尔科夫: 0.4 %哈尔科夫: 0.4 %哥伦布: 0.3 %哥伦布: 0.3 %嘉兴: 0.1 %嘉兴: 0.1 %大田广域: 0.1 %大田广域: 0.1 %天津: 0.3 %天津: 0.3 %孟买: 0.5 %孟买: 0.5 %安康: 0.1 %安康: 0.1 %宣城: 0.2 %宣城: 0.2 %山景: 0.1 %山景: 0.1 %巴中: 0.1 %巴中: 0.1 %常州: 0.3 %常州: 0.3 %广州: 0.1 %广州: 0.1 %张家口: 0.3 %张家口: 0.3 %德里: 0.2 %德里: 0.2 %德黑兰: 0.6 %德黑兰: 0.6 %忠清北道: 0.1 %忠清北道: 0.1 %成都: 0.1 %成都: 0.1 %新乡: 0.1 %新乡: 0.1 %新德里: 0.2 %新德里: 0.2 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.2 %杭州: 1.2 %武汉: 0.1 %武汉: 0.1 %毕晓普: 0.1 %毕晓普: 0.1 %汉诺威: 0.1 %汉诺威: 0.1 %深圳: 0.3 %深圳: 0.3 %温州: 0.2 %温州: 0.2 %湖州: 0.3 %湖州: 0.3 %漯河: 0.9 %漯河: 0.9 %珠海: 0.1 %珠海: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.3 %纽约: 0.3 %聊城: 0.3 %聊城: 0.3 %芒廷维尤: 14.4 %芒廷维尤: 14.4 %芝加哥: 0.1 %芝加哥: 0.1 %衢州: 0.3 %衢州: 0.3 %西孟加拉邦: 0.2 %西孟加拉邦: 0.2 %西宁: 45.2 %西宁: 45.2 %西安: 0.4 %西安: 0.4 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.2 %运城: 0.2 %郑州: 0.6 %郑州: 0.6 %重庆: 0.1 %重庆: 0.1 %长沙: 0.3 %长沙: 0.3 %长治: 0.1 %长治: 0.1 %阳泉: 0.2 %阳泉: 0.2 %黄山: 0.1 %黄山: 0.1 %其他其他ChinaIndiaKorea Republic ofPakistanSwitzerlandTaiwan, ChinaUnited States[]上海中山临汾丹东丽水内江北京十堰南京南平南通卢布林台北台州合肥咸阳哈尔科夫哥伦布嘉兴大田广域天津孟买安康宣城山景巴中常州广州张家口德里德黑兰忠清北道成都新乡新德里无锡昆明晋城普洱杭州武汉毕晓普汉诺威深圳温州湖州漯河珠海石家庄福州秦皇岛纽约聊城芒廷维尤芝加哥衢州西孟加拉邦西宁西安贵阳运城郑州重庆长沙长治阳泉黄山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article views (1088) PDF downloads(53) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return