Shi Difu, Qian Baoliang. Simulation study on relativistic magnetron with online switchable rotation direction of a circularly polarized TE11output mode[J]. High Power Laser and Particle Beams, 2021, 33: 073003. doi: 10.11884/HPLPB202133.210124
Citation: Wang Chuanwei, Li Hongtao. Design of two-stage square pulse forming network with coupling inductors[J]. High Power Laser and Particle Beams, 2019, 31: 040006. doi: 10.11884/HPLPB201931.180299

Design of two-stage square pulse forming network with coupling inductors

doi: 10.11884/HPLPB201931.180299
  • Received Date: 2018-10-31
  • Rev Recd Date: 2018-12-21
  • Publish Date: 2019-04-15
  • For the application demand of compact and miniaturized pulse source, the design technique of two-stage square pulse forming network(PFN) with mutual coupling inductors is developed. First, the decoupling conditions of this PFN are introduced. The corresponding output current expressions are derived using Laplace transform in the three commonly used network configurations. By using the Prony series expression of square pulse, the analytic expression is obtained by solving the nonlinear equations, and the parameters of each network element are worked out. The influence of the coupling inductors' coefficient in the circuit is studied. Then, the design method of two-stage PFN with mutual coupling inductors is proposed. The simulation results show that the output pulse with a certain width flat-top can be produced by using the designed PFN. With the ingenious design of mutual coupling inductors, the PFN producing square pulse can be conveniently realized.
  • [1]
    李志强, 杨建华, 张建德, 等. 紧凑重频PFN-Marx脉冲发生器[J]. 强激光与粒子束, 2016, 28: 015013. doi: 10.11884/HPLPB201628.015013

    Li Zhiqiang, Yang Jianhua, Zhang Jiande, et al. A compact repetitive PFN-Marx generator. High Power Laser and Particle Beams, 2016, 28: 015013 doi: 10.11884/HPLPB201628.015013
    [2]
    黄华, 范植开, 马乔生, 等. 长脉冲相对论速调管放大器的初步实验研究[J]. 强激光与粒子束, 2002, 14(6): 915-919. http://www.hplpb.com.cn/article/id/1409

    Huang Hua, Fan Zhikai, Ma Qiaosheng, et al. Progress on a long pulse relativistic klystron amplifier. High Power Laser and Particle Beams, 2002, 14(6): 915-919 http://www.hplpb.com.cn/article/id/1409
    [3]
    田锦昌, 宋小泉, 李自良. HPM脉冲形成网络的理论分析与计算[J]. 飞行器测控学报, 2003, 22(3): 72-74.

    Tian Jinchang, Song Xiaoquan, Li Ziliang. Theoretical analysis and calculation of HPM pulse forming network. Journal of Spacecraft TT&C Technology, 2003, 22(3): 72-74
    [4]
    吴谨, 万重怡. 紫外预电离TE(A)CO2激光器自持辉光放电的阻抗计算[J]. 激光杂志, 2002, 23(2): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ200202005.htm

    Wu Jin, Wan Chongyi. Calculation of the glow discharge impedance of a UV-preionized self-sustained TE(A) CO2 laser. Laser Journal, 2002, 23(2): 15-17 https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ200202005.htm
    [5]
    东冲. 线型脉冲调制器理论基础与专用电路[M]. 北京: 国防工业出版社, 1978.

    Dong Chong. Theory and circuit for special use of linear pulse modulator. Beijing: National Defense Industry Press, 1978
    [6]
    Kim A A, Mazarakis M G, Sinebryukhov V A, et al. Square pulse linear transformer driver[J]. Physical Review Special Topics—Accelerators and Beams, 2012, 15: 040401. doi: 10.1103/PhysRevSTAB.15.040401
    [7]
    王传伟, 李洪涛. 准方波脉冲形成网络的理论分析与设计[J]. 强激光与粒子束, 2018, 30: 035005. doi: 10.11884/HPLPB201830.170392

    Wang Chuanwei, Li Hongtao. Theoretical analysis and design of the trapezoidal pulse forming network. High Power Laser and Particle Beams, 2018, 30: 035005 doi: 10.11884/HPLPB201830.170392
    [8]
    潘子龙, 杨建华, 程新兵. 两节反谐振式网络输出方波脉冲的参数计算[J]. 强激光与粒子束, 2016, 28: 045008. doi: 10.11884/HPLPB201628.125008

    Pan Zilong, Yang Jianhua, Cheng Xinbing. Parameter calculation of square pulse output in two-node anti-resonance network. High Power Laser and Particle Beams, 2016, 28: 045008 doi: 10.11884/HPLPB201628.125008
    [9]
    曾凡刊. 网络分析与综合原理[M]. 武汉: 华中理工大学出版社, 1990: 190-194.

    Zeng Fankan. Network analysis and synthesis theory. Wuhan: Huazhong University of Science and Technology Press, 1990: 190-194
    [10]
    刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 2005: 139-144.

    Liu Xisan. High pulsed power technology. Beijing: National Defense Industry Press, 2005: 139-144
  • Relative Articles

    [1]Cui Yue, Qin Fen, Xu Sha, Lei Lurong, Zhang Yong, Zhang Yuhan. Design of permanent magnet packaging for an S-band relativistic magnetron with TE11 mode output[J]. High Power Laser and Particle Beams, 2025, 37(1): 013004. doi: 10.11884/HPLPB202537.240353
    [2]Zhang Yanyan, Chen Hong, Xu Jianjun, Deng Kun, Liu Dongsheng, Liu Qiao. Design and experimental study of S-band permanent magnet relativistic magnetron[J]. High Power Laser and Particle Beams, 2024, 36(3): 033007. doi: 10.11884/HPLPB202436.230250
    [3]Qin Fen, Xu Sha, Zhang Yong, Cui Yue, Zhang Yuhan, Wang Dong. Simulation investigation of Ku-band relativistic magnetron with all-cavity-axial-extraction[J]. High Power Laser and Particle Beams, 2024, 36(10): 103007. doi: 10.11884/HPLPB202436.240165
    [4]Zhou Hao, Cai Weihong, Wang Jiaoyin, Li Tianming. Research on mechanism of transparent cathode in relativistic magnetron[J]. High Power Laser and Particle Beams, 2021, 33(7): 073007. doi: 10.11884/HPLPB202133.210089
    [5]Qin Fen, Zhang Yong, Ju Bingquan, Lu Wei, Xu Sha, Wu Zhaoyang, Ding Enyan, Lei Lurong, Zhang Xinkai, Fang Xianghe, Yang Zhoubing, Wang Dong. Experimental investigation of L-band relativistic magnetron at long-term steady operation[J]. High Power Laser and Particle Beams, 2021, 33(7): 073002. doi: 10.11884/HPLPB202133.210137
    [6]Yang Wenyuan, Dong Ye, Sun Huifang, Dong Zhiwei. Structure optimization and performance improvements of relativistic magnetron using all-cavity output and semi-transparent cathode[J]. High Power Laser and Particle Beams, 2021, 33(7): 073001. doi: 10.11884/HPLPB202133.210098
    [7]Feng Yifu, Li Tianming, He Chaoxiong. Research on the mode of relativistic magnetron[J]. High Power Laser and Particle Beams, 2021, 33(7): 073005. doi: 10.11884/HPLPB202133.210111
    [8]Jiang Yaqun, Li Tianming, Hao Jinglong. Simulation of frequency hopping of relativistic magnetron based on transparent cathode[J]. High Power Laser and Particle Beams, 2016, 28(03): 033003. doi: 10.11884/HPLPB201628.033003
    [9]Shi Difu, Qian Baoliang, Li Wei, Wang Honggang. Compact output structure with TE11 radiated mode in magnetron with axial output[J]. High Power Laser and Particle Beams, 2016, 28(03): 033006. doi: 10.11884/HPLPB201628.033006
    [10]Wang Dong, Qin Fen, Yang Yulin, Zhang Yong, Xu Sha. Design of L band all cavity axial extraction relativistic magnetron[J]. High Power Laser and Particle Beams, 2016, 28(03): 033013. doi: 10.11884/HPLPB201628.033013
    [11]Liu Meiqin, Liu Chunliang, Wang Hongguang, Bao Rong, Li Yansong, Fan Zhuangzhuang. RF input technology in A6 magnetron with diffraction output[J]. High Power Laser and Particle Beams, 2013, 25(10): 2636-2642. doi: 10.3788/HPLPB20132510.2636
    [12]su li, li tianming, li jiayin. Simulation and experiment on transparent cathode for relativistic magnetron[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [13]zhang zhiqiang, fang jinyong, li jiawei, huang huijun, wang kangyi, song zhimin, huang wenhua, jiao yongchang. X-band high power microwave TE11 mode circular polarizer[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- .
    [14]li tianming, li jiayin, dong feifei, yu xiuyun, wang haiyang, li hao, zhou yihong. Self-magnetic field in relativistic magnetron[J]. High Power Laser and Particle Beams, 2010, 22(11): 0- .
    [15]li yongdong, wang hongguang, liu chunliang, zhang dianhui, wang jianguo, wang yue. 2.5-dimensional electromagnetic particle-in-cell code—UNIPIC for high power microwave simulations[J]. High Power Laser and Particle Beams, 2009, 21(12): 0- .
    [16]li tian-ming, li jia-yin, ma wen-duo, zhang bing, yu xiu-yun, li hao, wang hai-yang, zhou yi-hong, zhang ting-wei, zou huan. An experimental invesigation of frequency-agile relativistic magnetron[J]. High Power Laser and Particle Beams, 2006, 18(05): 0- .
    [17]zou huan, li jia-yin, li tian-ming, wang hai-yang, zhang ting-wei, li hao, yu xiu-yun. Optimization of tunable bandwidth of agile relativistic magnetron[J]. High Power Laser and Particle Beams, 2005, 17(08): 0- .
    [18]li tian ming, li jia yin, sun da rui, yu xiu yun, wang hai yang, li hao, ge peng. Primary design of Sband tunable relativistic magnetron[J]. High Power Laser and Particle Beams, 2004, 16(03): 0- .
    [19]li tian-ming, li jia-yin, yu xiu-yun, ma wen-duo, ge peng. Prepulse effects on the characteristics of relativistic magnetron[J]. High Power Laser and Particle Beams, 2003, 15(07): 0- .
  • Cited by

    Periodical cited type(2)

    1. 李波,马勋,赵娟,李洪涛,张信,康龙飞,康传会,李松杰,肖金水. 高鲁棒性双极性高压隔离采样电路设计. 强激光与粒子束. 2023(07): 123-129 . 本站查看
    2. 李波,赵娟,李洪涛,张信,马勋,李松杰,肖金水,黄宇鹏,康传会. 正负双极性直流高压充电电源设计. 强激光与粒子束. 2022(09): 132-138 . 本站查看

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 33.2 %FULLTEXT: 33.2 %META: 62.9 %META: 62.9 %PDF: 3.8 %PDF: 3.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.3 %其他: 3.3 %其他: 0.8 %其他: 0.8 %China: 1.2 %China: 1.2 %Greece: 0.2 %Greece: 0.2 %India: 0.4 %India: 0.4 %Iran (ISLAMIC Republic Of): 0.3 %Iran (ISLAMIC Republic Of): 0.3 %Matawan: 0.2 %Matawan: 0.2 %Pakistan: 1.3 %Pakistan: 1.3 %San Mateo: 0.1 %San Mateo: 0.1 %Turkey: 0.2 %Turkey: 0.2 %United States: 0.7 %United States: 0.7 %[]: 1.0 %[]: 1.0 %三明: 0.1 %三明: 0.1 %上海: 2.2 %上海: 2.2 %东莞: 0.2 %东莞: 0.2 %中卫: 0.2 %中卫: 0.2 %中山: 0.1 %中山: 0.1 %丹东: 0.1 %丹东: 0.1 %保定: 0.1 %保定: 0.1 %北京: 3.6 %北京: 3.6 %南京: 0.1 %南京: 0.1 %南宁: 0.1 %南宁: 0.1 %博阿努瓦: 0.2 %博阿努瓦: 0.2 %卡尔加里: 0.1 %卡尔加里: 0.1 %厦门: 0.1 %厦门: 0.1 %台州: 0.4 %台州: 0.4 %合肥: 0.2 %合肥: 0.2 %咸阳: 0.4 %咸阳: 0.4 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.1 %唐山: 0.1 %塔林: 0.1 %塔林: 0.1 %天津: 0.1 %天津: 0.1 %娄底: 0.1 %娄底: 0.1 %宣城: 0.1 %宣城: 0.1 %岳阳: 0.2 %岳阳: 0.2 %广州: 0.1 %广州: 0.1 %张家口: 2.0 %张家口: 2.0 %惠州: 0.1 %惠州: 0.1 %成都: 1.0 %成都: 1.0 %扬州: 0.1 %扬州: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.3 %昆明: 0.3 %普洱: 0.1 %普洱: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.2 %杭州: 0.2 %桂林: 0.1 %桂林: 0.1 %梅州: 0.1 %梅州: 0.1 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.1 %沈阳: 0.1 %泉州: 0.1 %泉州: 0.1 %淄博: 0.1 %淄博: 0.1 %深圳: 0.1 %深圳: 0.1 %湖州: 0.3 %湖州: 0.3 %漯河: 0.1 %漯河: 0.1 %烟台: 0.1 %烟台: 0.1 %石家庄: 1.2 %石家庄: 1.2 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.2 %纽约: 0.2 %绵阳: 0.3 %绵阳: 0.3 %耶拿: 0.3 %耶拿: 0.3 %肇庆: 0.1 %肇庆: 0.1 %芒廷维尤: 23.1 %芒廷维尤: 23.1 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.1 %苏州: 0.1 %葫芦岛: 0.1 %葫芦岛: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.3 %衢州: 0.3 %襄阳: 0.1 %襄阳: 0.1 %西宁: 45.1 %西宁: 45.1 %西安: 0.7 %西安: 0.7 %贵阳: 0.4 %贵阳: 0.4 %运城: 1.3 %运城: 1.3 %邯郸: 0.1 %邯郸: 0.1 %邵阳: 0.1 %邵阳: 0.1 %郑州: 0.6 %郑州: 0.6 %重庆: 0.1 %重庆: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 1.7 %长沙: 1.7 %长治: 0.2 %长治: 0.2 %阳泉: 0.1 %阳泉: 0.1 %首尔: 0.2 %首尔: 0.2 %其他其他ChinaGreeceIndiaIran (ISLAMIC Republic Of)MatawanPakistanSan MateoTurkeyUnited States[]三明上海东莞中卫中山丹东保定北京南京南宁博阿努瓦卡尔加里厦门台州合肥咸阳哥伦布唐山塔林天津娄底宣城岳阳广州张家口惠州成都扬州无锡昆明普洱朝阳杭州桂林梅州武汉沈阳泉州淄博深圳湖州漯河烟台石家庄福州秦皇岛纽约绵阳耶拿肇庆芒廷维尤芝加哥苏州葫芦岛衡阳衢州襄阳西宁西安贵阳运城邯郸邵阳郑州重庆长春长沙长治阳泉首尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views (1532) PDF downloads(129) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return