Volume 31 Issue 8
Aug.  2019
Turn off MathJax
Article Contents
Wang Zicheng, Qu Zhaowei, Shang Xinwen, et al. RF system of a 220 GHz extended interaction klystron[J]. High Power Laser and Particle Beams, 2019, 31: 083101. doi: 10.11884/HPLPB201931.180312
Citation: Wang Zicheng, Qu Zhaowei, Shang Xinwen, et al. RF system of a 220 GHz extended interaction klystron[J]. High Power Laser and Particle Beams, 2019, 31: 083101. doi: 10.11884/HPLPB201931.180312

RF system of a 220 GHz extended interaction klystron

doi: 10.11884/HPLPB201931.180312
  • Received Date: 2018-11-10
  • Rev Recd Date: 2019-03-12
  • Publish Date: 2019-08-15
  • An extended interaction klystron (EIK), which is composed of an input cavity and an output cavity both based on 8 periods of staggered double rectangular waveguide structure (SDRWS) and an intermediate cavity based on 6 periods of SDRWS, is calculated in detail on computer.After calculating reflection coefficient S11 of the input cavity and output cavity and the eigenmodes of the intermediate cavity, the structural parameters of the input cavity and output cavity and the intermediate cavity are determined, then PIC simulation is done to predict the EIK's performance, the results show that the EIK has an 1 GHz 3 dB bandwidth (219.5-220.5 GHz), a 456 W maximum power and a 40.06 dB maximum gain.Furthermore, stagger tuning by adjusting the structural parameter aof the intermediate cavity is performed to analyse howaaffects the EIK's performances, and the results show that the 3 dB band of the EIK mainly depends on the passband of the input cavity and output cavity, it also depends on the resonant frequency of the intermediate cavity in some cases.When the resonant frequency of the intermediate cavity is located at the lower or higher ends of the passband of the input cavity and output cavity, the 3 dB band of the EIK may be extended to certain extent.Particularly, when the resonant frequency of the intermediate cavity is located at or beyond the higher ends of the passband of the input cavity and output cavity, it is verified that the EIK has steady output signal featuring with pure spectrum and flat gains over the 3 dB band.The final results of the stagger tuning show that, when the structural parameter aof the intermediate cavity is 0.747 mm, the EIK reaches almost the optimum performances, with an 1.2 GHz3 dB bandwidth (219.5-220.7 GHz), a 630 W maximum power companied with a 11.3%efficiency, and a 47 dB maximum gain.
  • loading
  • [1]
    John H B, Richard J D, Colin D J, et al. Vacuum electronic high power terahertz sources[J]. IEEE Trans on Terahertz Science and Technology, 2011, 1(1): 54-75. doi: 10.1109/TTHZ.2011.2151610
    [2]
    Albert R, Dave B, Mark H, et al. Sub-millimeter waves from a compact, low voltage extended interaction klystron[C]//Proc of IRMMW-THz. 2007: 1-3.
    [3]
    Mark H, Albert R, Peter H, et al. A compact, high power, sub-millimeter-wave extended interaction klystron[C]//Proc of IEEE International Vacuum Electronics Conference. 2008: 297.
    [4]
    Peter H, Albert R, Richard D, et al. Compact sources of high RF power for DNP applications[C]//Proc of IEEE International Vacuum Electronics Conference. 2014: 221-222.
    [5]
    Albert R, Mark H, Peter H, et al. Development of sub-millimeter high power compact EIKs for DNP and radar applications[C]//Proc of IEEE International Vacuum Electronics Conference. 2017: ID62.
    [6]
    Richard D, Albert R, Peter H, et al. Design and fabrication of terahertz extended interaction klystrons[C]//Proc of IRMMW-THz. 2010: 1-3.
    [7]
    Richard D, Albert R, Peter H, et al. Fabrication techniques for a THz EIK[C]//Proc of IEEE International Vacuum Electronics Conference. 2010: 181-182.
    [8]
    吴振华, 张开春, 刘盛纲. 扩展互作用谐振腔的模拟分析[J]. 强激光与粒子束, 2007, 19(3): 483-486. http://www.hplpb.com.cn/article/id/3083

    Wu Zhenhua, Zhang Kaichun, Liu Shenggang. Simulation of extended interaction oscillator. High Power Laser and Particle Beams, 2007, 19(3): 483-486 http://www.hplpb.com.cn/article/id/3083
    [9]
    Zhang Kaichun, Wu Zhenhua, Liu Shenggang. Study of an extended interaction oscillator with a rectangular reentrance coupled-cavity in Terahertz region[J]. J Infrared Milli Terahz Waves, 2009, 30: 308-318.
    [10]
    Zhu Xiaofang, Jin Xiaolin, Huang Lili, et al. Study of a W-band sheet-beam extended interaction klystron[C]//Proc of IEEE International Vacuum Electronics Conference. 2015: si0240.
    [11]
    Zeng Zaojin, Zhou Lin, Li Wenjun, et al. Design and optimization of a W-band extended interaction klystron amplifier[C]//Proc of IEEE International Vacuum Electronics Conference. 2015: si0369.
    [12]
    Gao Dongping, Zhang Zhaochuan, Ding Yaogen, et al. Design of a continuous wave Ka-band extended interaction klystron[C]//Proc of IEEE International Vacuum Electronics Conference. 2014: 355-356.
    [13]
    Chen Shuyuan, Ran Cunjun, Wang Yong. Equivalent circuit of multi-gap output cavity for sheet beam EIK[C]//Proc of IEEE International Vacuum Electronics Conference. 2014: 347-348.
    [14]
    Qu Zhaowei, Zhang Zhiqiang, Ding Yaogen, et al. Research progress of a W-band 100-watts extended interaction oscillator[C]//Proc of IEEE International Vacuum Electronics Conference. 2017: ID94.
    [15]
    王自成, 唐伯俊, 谢文球, 等. 0.22 THz高效率行波管的互作用计算[J]. 强激光与粒子束, 2016, 28: 023101. doi: 10.11884/HPLPB201628.023101

    Wang Zicheng, Tang Bojun, Xie Wenqiu, et al. Calculation of interaction in 0.22 THz high efficiency traveling wave tube. High Power Laser and Particle Beams, 2016, 28: 023101 doi: 10.11884/HPLPB201628.023101
    [16]
    刘青伦, 王自成, 刘濮鲲, 等. 基于场匹配法的双排矩形栅慢波结构高频特性研究[J]. 物理学报, 2012, 61: 244102. doi: 10.7498/aps.61.244102

    Liu Qinglun, Wang Zicheng, Liu Pukun, et al. Analysis of high frequency characteristics of the double-grating rectangular waveguide slow-wave-structure based on the field match method. Acta Physica Sinica, 2012, 61: 244102 doi: 10.7498/aps.61.244102
    [17]
    刘青伦, 王自成, 刘濮鲲. 基于双排矩形波导慢波结构W波段宽频带行波管模拟研究[J]. 物理学报, 2012, 61: 124101. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201212025.htm

    Liu Qinglun, Wang Zicheng, Liu Pukun. Simulation studies on W-band traveling-wave tube with double rectangular comb slow-wave structure. Acta Physica Sinica, 2012, 61: 124101 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201212025.htm
    [18]
    谢文球, 王自成, 罗积润, 等. 基于开槽单矩形栅和圆形电子注的W波段返波振荡器[J]. 物理学报, 2013, 62: 158503. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201315074.htm

    Xie Wenqiu, Wang Zicheng, Luo Jirun, et al. Design and simulation of W-band BWO based on slotted single-grating and cylindrical beam. Acta Physica Sinica, 2013, 62: 158503 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201315074.htm
    [19]
    Liu Qinglun, Wang Zicheng, Liu Pukun, et al. A THz backward-wave oscillator based on a double-grating rectangular waveguide[J]. IEEE Transactions on Electron Devices, 2013, 60(4): 1463-1468.
    [20]
    徐翱, 胡林林, 阎磊, 等. 0.22 THz折叠波导行波管部件设计与加工[J]. 强激光与粒子束, 2012, 24(9): 2135-2140. doi: 10.3788/HPLPB20122409.2135

    Xu Ao, Hu Linlin, Yan Lei, et al. Design and machining of components of 0.22 THz folded waveguide traveling wave tube. High Power Laser and Particle Beams, 2012, 24(9): 2135-2140 doi: 10.3788/HPLPB20122409.2135
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article views (1244) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return