Yang Hao, Le Bo, Yan Eryan, et al. Analysis and calculation of damping used in random coupling model[J]. High Power Laser and Particle Beams, 2017, 29: 103202. doi: 10.11884/HPLPB201729.170152
Citation: Wang Zicheng, Qu Zhaowei, Shang Xinwen, et al. RF system of a 220 GHz extended interaction klystron[J]. High Power Laser and Particle Beams, 2019, 31: 083101. doi: 10.11884/HPLPB201931.180312

RF system of a 220 GHz extended interaction klystron

doi: 10.11884/HPLPB201931.180312
  • Received Date: 2018-11-10
  • Rev Recd Date: 2019-03-12
  • Publish Date: 2019-08-15
  • An extended interaction klystron (EIK), which is composed of an input cavity and an output cavity both based on 8 periods of staggered double rectangular waveguide structure (SDRWS) and an intermediate cavity based on 6 periods of SDRWS, is calculated in detail on computer.After calculating reflection coefficient S11 of the input cavity and output cavity and the eigenmodes of the intermediate cavity, the structural parameters of the input cavity and output cavity and the intermediate cavity are determined, then PIC simulation is done to predict the EIK's performance, the results show that the EIK has an 1 GHz 3 dB bandwidth (219.5-220.5 GHz), a 456 W maximum power and a 40.06 dB maximum gain.Furthermore, stagger tuning by adjusting the structural parameter aof the intermediate cavity is performed to analyse howaaffects the EIK's performances, and the results show that the 3 dB band of the EIK mainly depends on the passband of the input cavity and output cavity, it also depends on the resonant frequency of the intermediate cavity in some cases.When the resonant frequency of the intermediate cavity is located at the lower or higher ends of the passband of the input cavity and output cavity, the 3 dB band of the EIK may be extended to certain extent.Particularly, when the resonant frequency of the intermediate cavity is located at or beyond the higher ends of the passband of the input cavity and output cavity, it is verified that the EIK has steady output signal featuring with pure spectrum and flat gains over the 3 dB band.The final results of the stagger tuning show that, when the structural parameter aof the intermediate cavity is 0.747 mm, the EIK reaches almost the optimum performances, with an 1.2 GHz3 dB bandwidth (219.5-220.7 GHz), a 630 W maximum power companied with a 11.3%efficiency, and a 47 dB maximum gain.
  • [1]
    John H B, Richard J D, Colin D J, et al. Vacuum electronic high power terahertz sources[J]. IEEE Trans on Terahertz Science and Technology, 2011, 1(1): 54-75. doi: 10.1109/TTHZ.2011.2151610
    [2]
    Albert R, Dave B, Mark H, et al. Sub-millimeter waves from a compact, low voltage extended interaction klystron[C]//Proc of IRMMW-THz. 2007: 1-3.
    [3]
    Mark H, Albert R, Peter H, et al. A compact, high power, sub-millimeter-wave extended interaction klystron[C]//Proc of IEEE International Vacuum Electronics Conference. 2008: 297.
    [4]
    Peter H, Albert R, Richard D, et al. Compact sources of high RF power for DNP applications[C]//Proc of IEEE International Vacuum Electronics Conference. 2014: 221-222.
    [5]
    Albert R, Mark H, Peter H, et al. Development of sub-millimeter high power compact EIKs for DNP and radar applications[C]//Proc of IEEE International Vacuum Electronics Conference. 2017: ID62.
    [6]
    Richard D, Albert R, Peter H, et al. Design and fabrication of terahertz extended interaction klystrons[C]//Proc of IRMMW-THz. 2010: 1-3.
    [7]
    Richard D, Albert R, Peter H, et al. Fabrication techniques for a THz EIK[C]//Proc of IEEE International Vacuum Electronics Conference. 2010: 181-182.
    [8]
    吴振华, 张开春, 刘盛纲. 扩展互作用谐振腔的模拟分析[J]. 强激光与粒子束, 2007, 19(3): 483-486. http://www.hplpb.com.cn/article/id/3083

    Wu Zhenhua, Zhang Kaichun, Liu Shenggang. Simulation of extended interaction oscillator. High Power Laser and Particle Beams, 2007, 19(3): 483-486 http://www.hplpb.com.cn/article/id/3083
    [9]
    Zhang Kaichun, Wu Zhenhua, Liu Shenggang. Study of an extended interaction oscillator with a rectangular reentrance coupled-cavity in Terahertz region[J]. J Infrared Milli Terahz Waves, 2009, 30: 308-318.
    [10]
    Zhu Xiaofang, Jin Xiaolin, Huang Lili, et al. Study of a W-band sheet-beam extended interaction klystron[C]//Proc of IEEE International Vacuum Electronics Conference. 2015: si0240.
    [11]
    Zeng Zaojin, Zhou Lin, Li Wenjun, et al. Design and optimization of a W-band extended interaction klystron amplifier[C]//Proc of IEEE International Vacuum Electronics Conference. 2015: si0369.
    [12]
    Gao Dongping, Zhang Zhaochuan, Ding Yaogen, et al. Design of a continuous wave Ka-band extended interaction klystron[C]//Proc of IEEE International Vacuum Electronics Conference. 2014: 355-356.
    [13]
    Chen Shuyuan, Ran Cunjun, Wang Yong. Equivalent circuit of multi-gap output cavity for sheet beam EIK[C]//Proc of IEEE International Vacuum Electronics Conference. 2014: 347-348.
    [14]
    Qu Zhaowei, Zhang Zhiqiang, Ding Yaogen, et al. Research progress of a W-band 100-watts extended interaction oscillator[C]//Proc of IEEE International Vacuum Electronics Conference. 2017: ID94.
    [15]
    王自成, 唐伯俊, 谢文球, 等. 0.22 THz高效率行波管的互作用计算[J]. 强激光与粒子束, 2016, 28: 023101. doi: 10.11884/HPLPB201628.023101

    Wang Zicheng, Tang Bojun, Xie Wenqiu, et al. Calculation of interaction in 0.22 THz high efficiency traveling wave tube. High Power Laser and Particle Beams, 2016, 28: 023101 doi: 10.11884/HPLPB201628.023101
    [16]
    刘青伦, 王自成, 刘濮鲲, 等. 基于场匹配法的双排矩形栅慢波结构高频特性研究[J]. 物理学报, 2012, 61: 244102. doi: 10.7498/aps.61.244102

    Liu Qinglun, Wang Zicheng, Liu Pukun, et al. Analysis of high frequency characteristics of the double-grating rectangular waveguide slow-wave-structure based on the field match method. Acta Physica Sinica, 2012, 61: 244102 doi: 10.7498/aps.61.244102
    [17]
    刘青伦, 王自成, 刘濮鲲. 基于双排矩形波导慢波结构W波段宽频带行波管模拟研究[J]. 物理学报, 2012, 61: 124101. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201212025.htm

    Liu Qinglun, Wang Zicheng, Liu Pukun. Simulation studies on W-band traveling-wave tube with double rectangular comb slow-wave structure. Acta Physica Sinica, 2012, 61: 124101 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201212025.htm
    [18]
    谢文球, 王自成, 罗积润, 等. 基于开槽单矩形栅和圆形电子注的W波段返波振荡器[J]. 物理学报, 2013, 62: 158503. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201315074.htm

    Xie Wenqiu, Wang Zicheng, Luo Jirun, et al. Design and simulation of W-band BWO based on slotted single-grating and cylindrical beam. Acta Physica Sinica, 2013, 62: 158503 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201315074.htm
    [19]
    Liu Qinglun, Wang Zicheng, Liu Pukun, et al. A THz backward-wave oscillator based on a double-grating rectangular waveguide[J]. IEEE Transactions on Electron Devices, 2013, 60(4): 1463-1468.
    [20]
    徐翱, 胡林林, 阎磊, 等. 0.22 THz折叠波导行波管部件设计与加工[J]. 强激光与粒子束, 2012, 24(9): 2135-2140. doi: 10.3788/HPLPB20122409.2135

    Xu Ao, Hu Linlin, Yan Lei, et al. Design and machining of components of 0.22 THz folded waveguide traveling wave tube. High Power Laser and Particle Beams, 2012, 24(9): 2135-2140 doi: 10.3788/HPLPB20122409.2135
  • Relative Articles

    [1]Li Xiaopeng, Wei Guanghui, Sun Jiangning, Lu Xinfu, Wan Haojiang. Phenomena of susceptibility to strong electromagnetic radiation effects of regulated power supply[J]. High Power Laser and Particle Beams, 2025, 37(5): 053002. doi: 10.11884/HPLPB202537.240323
    [2]Zhang Shuai, Zhang Yibo, Tu Min. Brief analysis of research trends of high power microwave effect in the United States[J]. High Power Laser and Particle Beams, 2024, 36(1): 013001. doi: 10.11884/HPLPB202436.230304
    [3]Yuan Yueqian, Chen Zidong, Ma Hongge, Qin Feng. High power microwave effect of PIN limiter induced by single pulse[J]. High Power Laser and Particle Beams, 2020, 32(6): 063003. doi: 10.11884/HPLPB202032.190174
    [4]Zhao Tongcheng, Yu Daojie, Zhou Dongfang, Chai Mengjuan, He Kai, Zhou Changlin, Wei Jinjin. Ultra-wide spectrum electromagnetic pulse effect and experimental analysis of UAV GPS receiver[J]. High Power Laser and Particle Beams, 2019, 31(2): 023001. doi: 10.11884/HPLPB201931.180365
    [5]Li Xiaoyan, Yan Liping, Zhao Xiang. Coupling of electromagnetic field to transmission line above the composite plate[J]. High Power Laser and Particle Beams, 2019, 31(5): 053201. doi: 10.11884/HPLPB201931.190030
    [6]Chai Mengjuan, Yu Daojie, Hu Junjie, He Kai, Zhao Tongcheng, Zhou Dongfang. Electromagnetic interference effect of power supply in typical audio amplifier circuit[J]. High Power Laser and Particle Beams, 2019, 31(4): 040014. doi: 10.11884/HPLPB201931.180366
    [7]Zhao Juan, Li Bo, Li Xiqin, Cao Ningxiang, Huang Bin, Yu Zhiguo, Zhang Xin, Wang Lan, Li Hongtao. Design and actualization of high electromagnetic compatibility high power constant-current supply[J]. High Power Laser and Particle Beams, 2018, 30(2): 025007. doi: 10.11884/HPLPB201830.170359
    [8]Li Xin, Meng Cui, Liu Yinong. System-level high power microwave effects analyzed by stochastic topology approach[J]. High Power Laser and Particle Beams, 2015, 27(10): 103244. doi: 10.11884/HPLPB201527.103244
    [9]Fan Jieqing, Hao Jianhong, Jiang Luhang. Statistical characteristics of coupling effect of complex cavity based on Random Coupling Model[J]. High Power Laser and Particle Beams, 2015, 27(10): 103257. doi: 10.11884/HPLPB201527.103257
    [10]Hu Kai, Li Tianming, Wang Haiyang, Zhou Yihong. High power microwave effect of multi-stage PIN[J]. High Power Laser and Particle Beams, 2014, 26(06): 063015. doi: 10.11884/HPLPB201426.063015
    [11]Yan Eryan, Meng Fanbao, Ma Hongge. Analysis of systemic electromagnetic environment effects based on Random Coupling Model[J]. High Power Laser and Particle Beams, 2014, 26(06): 063203. doi: 10.11884/HPLPB201426.063203
    [12]Chen Jie, Du Zhengwei. Effect of electromagnetic interference frequency on CMOS inverters[J]. High Power Laser and Particle Beams, 2012, 24(01): 147-151.
    [13]tu min, huang wenhua, li ping. Equivalent circuit establishment and simulation of microwave mixer under high power microwave[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [14]yan eryan, meng fanbao, ma hongge. Application of random coupling model to high power microwave effects[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- .
    [15]yan eryan, ma hongge, meng fanbao. Preliminary study of wave-chaotic scattering in microwave cavity[J]. High Power Laser and Particle Beams, 2009, 21(03): 0- .
    [16]cao ronggang, zou jun, yuan jiansheng. Measurement and analysis of EMF around pulsed power supplies[J]. High Power Laser and Particle Beams, 2009, 21(09): 0- .
    [17]meng fan-jiang, guo li-hong, yang gui-long, li dian-jun. Suppression of electromagnetic interference in high power TEA CO2 laser system[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- .
    [18]weng ling-wen, niu zhong-xia, lin jing-yu, zhou dong-fang, hou de-ting. Application of BLT equation to electromagnetic interaction of high power microwave[J]. High Power Laser and Particle Beams, 2005, 17(08): 0- .
    [19]fang jing-yong, wang jian-guo, qiao deng-jiang. Applications of neuro-fuzzy system to data processing of microwave effects[J]. High Power Laser and Particle Beams, 2002, 14(02): 0- .
  • Cited by

    Periodical cited type(1)

    1. 李淼. 激光混沌耦合下映射序列扩频通信效率分析. 激光杂志. 2020(09): 107-110 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.1 %FULLTEXT: 20.1 %META: 78.5 %META: 78.5 %PDF: 1.4 %PDF: 1.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.6 %其他: 5.6 %China: 0.7 %China: 0.7 %India: 0.1 %India: 0.1 %上海: 0.9 %上海: 0.9 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %北京: 12.3 %北京: 12.3 %十堰: 0.2 %十堰: 0.2 %南京: 0.2 %南京: 0.2 %台州: 0.2 %台州: 0.2 %哥伦布: 0.4 %哥伦布: 0.4 %天津: 0.1 %天津: 0.1 %安康: 0.1 %安康: 0.1 %广州: 0.2 %广州: 0.2 %张家口: 1.3 %张家口: 1.3 %成都: 0.2 %成都: 0.2 %扬州: 0.1 %扬州: 0.1 %新乡: 0.2 %新乡: 0.2 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.1 %杭州: 1.1 %格兰特县: 0.1 %格兰特县: 0.1 %桃园: 0.1 %桃园: 0.1 %武汉: 0.2 %武汉: 0.2 %汉中: 0.2 %汉中: 0.2 %海口: 0.1 %海口: 0.1 %深圳: 0.7 %深圳: 0.7 %温州: 0.2 %温州: 0.2 %漯河: 0.9 %漯河: 0.9 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 10.5 %芒廷维尤: 10.5 %芝加哥: 0.3 %芝加哥: 0.3 %西宁: 59.9 %西宁: 59.9 %西安: 0.2 %西安: 0.2 %贵阳: 0.1 %贵阳: 0.1 %达州: 0.1 %达州: 0.1 %运城: 0.4 %运城: 0.4 %郑州: 0.9 %郑州: 0.9 %重庆: 0.1 %重庆: 0.1 %金华: 0.1 %金华: 0.1 %长沙: 0.4 %长沙: 0.4 %长治: 0.1 %长治: 0.1 %阳泉: 0.2 %阳泉: 0.2 %其他ChinaIndia上海中山临汾丹东北京十堰南京台州哥伦布天津安康广州张家口成都扬州新乡晋城普洱杭州格兰特县桃园武汉汉中海口深圳温州漯河石家庄秦皇岛绵阳芒廷维尤芝加哥西宁西安贵阳达州运城郑州重庆金华长沙长治阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article views (1285) PDF downloads(71) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return