Jiang Zhumin, Zhao Wenbo, Wang Jinyu, et al. Progress of the CORCA-K space-time neutronics simulation code[J]. High Power Laser and Particle Beams, 2017, 29: 066003. doi: 10.11884/HPLPB201729.160279
Citation: Zhang Xiuqing, Fu Peng, Gao Ge, et al. Temperature rise test method of ITER poloidal field converter[J]. High Power Laser and Particle Beams, 2019, 31: 035004. doi: 10.11884/HPLPB201931.180315

Temperature rise test method of ITER poloidal field converter

doi: 10.11884/HPLPB201931.180315
  • Received Date: 2018-12-05
  • Rev Recd Date: 2018-12-20
  • Publish Date: 2019-03-15
  • International thermonuclear experimental reactor (ITER) poloidal field (PF) converter is a high-power and heavy-current six-pulse converter bridge with rated capacity of 41 MV·A and rated current of 27.5 kA. For such a large rated current, ITER PF converter is designed to consist of 12 thyristor branches in parallel on each bridge arm. In temperature rise test, the temperature of several key parts such as thyristor case, fast fuse, flexible connection and RC loop resistance in the thyristor branch needs to be detected. If the temperature measurement points are arranged in each thyristor branch, there will be hundreds of temperature measurement points, which greatly increases the difficulty of temperature rise test. In order to decrease the temperature measurement points and facilitate the temperature rise test, the test method that the current balance test is performed first to get three thyristor branches with maximum current sharing and then the temperature rise test is performed at that key parts on these three thyristor branches is proposed in this paper. According to Joule's law, the key parts temperature rise of other thyristor branches must satisfy the requirement as long as the temperature rise of that key parts in these three thyristor branches with maximum current sharing satisfies the requirement. This test method simplifies the temperature measurement points from hundreds to dozens, which facilitates the layout of temperature measurement points and the acquisition of temperature data.
  • [1]
    冯开明. 可控核聚变与国际热核实验堆(ITER)计划[J]. 中国核电, 2009, 2(3): 212-219. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHD200903005.htm

    Feng Kaiming. Controlled nuclear fusion and ITER project. China Nuclear Power, 2009, 2(3): 212-219 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHD200903005.htm
    [2]
    潘传红. 国际热核实验反应堆(ITER)计划与未来核聚变能源[J]. 物理, 2010, 39(6): 375-378. https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ201006002.htm

    Pan Chuanhong. The international thermonuclear experimental reactor and the future of nuclear fusion energy. Physics, 2010, 39(6): 375-378 https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ201006002.htm
    [3]
    Tao Jun, Benfatto I, Goff J K, et al. ITER coil power supply and distribution system[C]//IEEE Symposium on Fusion Engineering. 2011, 166(12): 1-8.
    [4]
    Fu P, Gao G, Song Z H Q, et al. Preliminary design of the poloidal field AC/DC converter system for the ITER coil power supply[J]. Fusion Science & Technology, 2013, 64(4): 741-747.
    [5]
    Li J C, Song Z Q, et al. Current sharing analysis of arm prototype for ITER PF converter bridge[J]. Plasma Sci Technol, 2014, 16(3): 283-287. doi: 10.1088/1009-0630/16/3/20
    [6]
    半导体变流器通用要求和电网换相变流器第1-1部分: 基本要求规范[S].

    Semiconductor converters. General requirements and line commutated converters. Part 1-1: Specification of basic requirements
    [7]
    Zhang X, Fu P, Gao G, et al. Research on the test scheme of fault suppression capability for ITER PF converter[J]. Fusion Engineering & Design, 2017, 121: 7-12.
    [8]
    Yang G Y, Li X Y, Hu Y Y, et al. Review of thyristor junction temperature calculation methods[J]. East China Electric Power, 2013, 41(9): 1881-1886.
    [9]
    Song Z Q, Fu P, Li J, et al. Prototype design and test of ITER PF converter unit[J]. IEEE Trans Plasma Science, 2016: 1-7.
    [10]
    Song Z Q, Fu P, Gao G, et al. Full scale prototype research and development of the ITER PF converter unit[C]//IEEE Symposim on Fusion Engineering. 2016: 1-6.
  • Relative Articles

    [1]Dong Pan, Wang Tao, Li Jie, Liu Ping, He Jialong, Ye Longjian. Development of driving power supply for short pulse high yield neutron generator[J]. High Power Laser and Particle Beams, 2025, 37(3): 035002. doi: 10.11884/HPLPB202537.240409
    [2]Li Dongsheng, Li Zi, Wang Yonggang, Jiang Song, Rao Junfeng. Research on solid state Marx power supply with fast front[J]. High Power Laser and Particle Beams, 2024, 36(2): 025003. doi: 10.11884/HPLPB202436.230197
    [3]Rao Junfeng, Hong Lingfeng, Guo Longyue, Li Zi, Jiang Song. Investigation of high voltage pulse generators with Marx generators in parallel[J]. High Power Laser and Particle Beams, 2020, 32(5): 055001. doi: 10.11884/HPLPB202032.190472
    [4]Xiong Min, Zhang Yadong, Gong Yujia, Zhang Hu. Study on temperature rise of electromagnetic coil launcher[J]. High Power Laser and Particle Beams, 2020, 32(3): 035003. doi: 10.11884/HPLPB202032.190300
    [5]Wang Zhongma, Huang Liansheng, Fu Peng, Huang Ronglin, Chen Xiaojiao, Wang Zhenshang, Zeng Sizhe. Calculation of pulse current of high power converter[J]. High Power Laser and Particle Beams, 2019, 31(3): 036003. doi: 10.11884/HPLPB201931.180283
    [6]Zhao Ying, Yuan Weiqun, Xu Rong, Cheng Wenping, Che Yunlong, Xie Keyu, Yan Ping. Characteristics of the bus-bar of electromagnetic rail launcher[J]. High Power Laser and Particle Beams, 2018, 30(5): 055004. doi: 10.11884/HPLPB201830.170411
    [7]Guo Haishan, Yang Lanjun, Liu Shuai, Zhang Yongpeng, Li Borui, Liu Siyan. A pulsed power source for triggering ignition[J]. High Power Laser and Particle Beams, 2018, 30(9): 095008. doi: 10.11884/HPLPB201830.180016
    [8]Zhang Xiuqing, Fu Peng, Gao Ge, Song Zhiquan. Research on short circuit test of ITER DC line disconnector[J]. High Power Laser and Particle Beams, 2017, 29(02): 025003. doi: 10.11884/HPLPB201729.160450
    [9]Niu Xiaobo, Liu Kaipei, Zhang Yadong, Zhou Liang, Linghu Xuanxia. Calculation of temperature rise of armature in multi-stage synchronous inductive coilgun based on current filament method[J]. High Power Laser and Particle Beams, 2015, 27(09): 095001. doi: 10.11884/HPLPB201527.095001
    [10]Zeng Herong, Huang Hongwen, Liu Zhiyong, Li Zhenghong, Qian Dazhi, Liang Shangming, Guo Haibing, Ma Jimin, Wang Shaohua, Song Juan. Whole structure conceptual design of subcritical blanket driven by ITER[J]. High Power Laser and Particle Beams, 2015, 27(01): 016014. doi: 10.11884/HPLPB201527.016014
    [11]Li Xingqun, Zhang Ming, Liu Minghai, Chang Jiang, Deng Shan, Qiu Shengshun. Design of air-core transformer for pulsed current system[J]. High Power Laser and Particle Beams, 2012, 24(09): 2245-2249. doi: 10.3788/HPLPB20122409.2245
    [12]Wang Haiyang, He Xiaoping, Zhou Jingzhi, Chen Weiqing, Guo Fan, Xie Linshen, Li Junna, Zou Lili, Tang Junping, Jia Wei. Lifetime of high power reversely switched dynistor switches[J]. High Power Laser and Particle Beams, 2012, 24(05): 1191-1194. doi: 10.3788/HPLPB20122405.1191
    [13]Zhou Zhengyang, Dai Ling, Nan Jing, Wang YanZhao, Lin Fuchang. Arc characteristics of triggered vacuum switch with multi-rod electrode under high current[J]. High Power Laser and Particle Beams, 2012, 24(04): 823-826. doi: 10.3788/HPLPB20122404.0823
    [14]he xiaoping, wang haiyang, zhou jingzhi, chen weiqing, xue binjie, tang junping, qiu aici. 12 kV high voltage reversely switched dynistor assembly[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [15]zhao juan, cao kefeng, cao ningxiang, huang bin, yu zhiguo, li xiqin, li bo, huang lei, wang wei, zhu lijun. Development of HL80 low ripple high current computer-controlling constant current source[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [16]he mengbing, li tao, wu guohua, jiang chen, li zhipeng. Trigger system of two-electrode gas spark switch[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- .
    [17]guo liang-fu, zhou sheng, li zhi-peng, he meng-bing, li yi-zheng, lai gui-you, chen de-huai, zhou pi-zhang. High Coulomb and high current gas spark switch[J]. High Power Laser and Particle Beams, 2007, 19(05): 0- .
    [18]lai gui-you, guo liang-fu, li yi-zheng, chen de-huai, chen qing-hai, zhou pi-zhang. High current two-electrode gas switch[J]. High Power Laser and Particle Beams, 2006, 18(06): 0- .
    [19]zhou yu-ming, yu yue-hui, liang lin, chen hai-gang. Experimental investigation of ultrafast and high current semiconductor switch[J]. High Power Laser and Particle Beams, 2006, 18(03): 0- .
    [20]chen dong-qun, cao sheng-guang, li da, wen jian-chun, liu che-bo, liu yong-gui, zhang jian-de, zhong hui-huang. Cascaded helical magnetic flux compression generator with a battery as initial source[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- .
  • Cited by

    Periodical cited type(1)

    1. 任喜强,李运刚,齐艳飞,周景一,王波. 钨铼合金制备工艺及其热负载行为的研究现状. 稀有金属材料与工程. 2022(07): 2681-2688 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.3 %FULLTEXT: 22.3 %META: 76.1 %META: 76.1 %PDF: 1.7 %PDF: 1.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.8 %其他: 3.8 %China: 0.4 %China: 0.4 %India: 0.1 %India: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 1.1 %United States: 1.1 %[]: 0.3 %[]: 0.3 %上海: 0.8 %上海: 0.8 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %六安: 0.1 %六安: 0.1 %北京: 15.4 %北京: 15.4 %南昌: 0.1 %南昌: 0.1 %台州: 0.5 %台州: 0.5 %合肥: 0.6 %合肥: 0.6 %哥伦布: 0.1 %哥伦布: 0.1 %天津: 0.1 %天津: 0.1 %宣城: 0.3 %宣城: 0.3 %广州: 0.1 %广州: 0.1 %张家口: 1.6 %张家口: 1.6 %新乡: 0.1 %新乡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %景德镇: 0.1 %景德镇: 0.1 %杭州: 1.7 %杭州: 1.7 %武汉: 0.2 %武汉: 0.2 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.1 %济南: 0.1 %淄博: 0.1 %淄博: 0.1 %淮北: 0.1 %淮北: 0.1 %深圳: 0.3 %深圳: 0.3 %湖州: 0.2 %湖州: 0.2 %漯河: 0.2 %漯河: 0.2 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 23.7 %芒廷维尤: 23.7 %芝加哥: 0.1 %芝加哥: 0.1 %衢州: 0.5 %衢州: 0.5 %西宁: 43.5 %西宁: 43.5 %西安: 0.2 %西安: 0.2 %谢利夫: 0.1 %谢利夫: 0.1 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.7 %运城: 0.7 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.1 %郑州: 1.1 %重庆: 0.1 %重庆: 0.1 %其他ChinaIndiaTaiwan, ChinaUnited States[]上海中山临汾丹东六安北京南昌台州合肥哥伦布天津宣城广州张家口新乡昆明晋城普洱景德镇杭州武汉沈阳济南淄博淮北深圳湖州漯河福州秦皇岛芒廷维尤芝加哥衢州西宁西安谢利夫贵阳运城邯郸郑州重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article views (1014) PDF downloads(69) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return