Volume 31 Issue 2
Feb.  2019
Turn off MathJax
Article Contents
Ma Wang, Li Yiwen, Zhao Weizhuo, et al. Experimental investigation on mode transition of inductively coupled plasma discharge under axial magnetic field[J]. High Power Laser and Particle Beams, 2019, 31: 022002. doi: 10.11884/HPLPB201931.180325
Citation: Ma Wang, Li Yiwen, Zhao Weizhuo, et al. Experimental investigation on mode transition of inductively coupled plasma discharge under axial magnetic field[J]. High Power Laser and Particle Beams, 2019, 31: 022002. doi: 10.11884/HPLPB201931.180325

Experimental investigation on mode transition of inductively coupled plasma discharge under axial magnetic field

doi: 10.11884/HPLPB201931.180325
  • Received Date: 2018-11-15
  • Rev Recd Date: 2019-01-09
  • Publish Date: 2019-02-15
  • In order to investigate the problem of mode transition of radio frequency Ar inductively coupled plasma under the influence of axial magnetic field, a small inductively coupled plasma generator experimental system was designed and built. The impedance analysis method was used in the experiment, also verified correct by Langmuir probe method. It is found out that, when the pressure is 10 Pa, the increase of axial magnetic field intensity will increase the discharge power of E-H and H-E mode transitions. At the same time, the stronger the magnetic field is, the lower the electron density at the center of discharge area is. According to some preliminary analysis, charged particles make cyclotron motion at the influence of Lorentz force, which leads to the reduced collisions of high-energy electrons in the direction perpendicular to the magnetic field. Accordingly, electron density decreases and power coupling efficiency decreases. Further analysis on electron energy probability function (EEPF) has suggested that axial magnetic field has stronger restriction on electronic motion under E mode than H mode. As a result, the reduced collisions lead to a higher high-energy (>27 eV) proportion and a more uniform electron energy probability function under E mode, which has conformed with aforementioned analysis.
  • loading
  • [1]
    徐会静. 射频感性耦合氢等离子体放电模式转换及回滞的模拟研究[D]. 大连: 大连理工大学, 2016.

    Xu Huijing. Simulation investigation of mode transitions and hysteresis in radio frequency H2 inductively coupled plasma. Dalian: Dalian University of Technology, 2016
    [2]
    Cunge G, Crowley B, Vender D, et al. Characterization of the E to H transition in a pulsed inductively coupled plasma discharge with internal coil geometry: bi-stability and hysteresis[J]. Plasma sources science and technology, 1999, 8(4): 576-586. doi: 10.1088/0963-0252/8/4/309
    [3]
    Kortshagen U, Gibson N D, Lawler J E. On the E-H mode transition in RF inductive discharges[J]. Journal of Physics D: Applied Physics, 1996, 29(5): 1224-1236. doi: 10.1088/0022-3727/29/5/017
    [4]
    Singh S V, Kempkes P, Soltwisch H. Electron energy distribution function close to the mode transition region in an inductively coupled gaseous electronics conference reference cell[J]. Appl Phys Lett, 2006, 89: 161501. doi: 10.1063/1.2362599
    [5]
    Singh S V. Hysteresis and mode transition in terms of electron energy distribution function for an inductively coupled argon discharge[J]. Journal of Physics D: Applied Physics Letters, 2006, 103: 083303.
    [6]
    Lee H C, Chung C W. Experimental measurements of spatial plasma potentials and electron energy distributions in inductively coupled plasma under weakly collisional and nonlocal electron kinetic regimes[J]. Physics of Plasmas, 2012, 19: 033514. doi: 10.1063/1.3692768
    [7]
    Turner M M, Lieberman M A. Hysteresis and the E-to-H transition in radiofrequency inductive discharges[J]. Plasma Sources Science and Technology, 1999, 8(2): 313-324. doi: 10.1088/0963-0252/8/2/312
    [8]
    El-Fayoumi I M, Jones I R, Turner M M. Hysteresis in the E- to H- mode transition in a planar coil inductively coupled rf argon discharge[J]. Journal of Physics D: Applied Physics, 1998, 31(21): 3082-3094. doi: 10.1088/0022-3727/31/21/014
    [9]
    Kralkina E A, Rukhadze A A, Nekliudova P A, et al. RF power absorption by plasma of low pressure low power inductive discharge located in the external magnetic field[J]. Aip Advances, 2018, 8: 035217. doi: 10.1063/1.5023631
    [10]
    汪建. 射频电感耦合等离子体及模式转变的实验研究[D]. 合肥: 中国科学技术大学, 2014.

    Wang Jian. Experimental study of radio frequency inductively coupled plasma and mode transition. Hefei: University of Science and Technology of China, 2014
    [11]
    Lee H C, Chung C W. Effect of antenna size on electron kinetics in inductively coupled plasmas[J]. Physics of Plasmas, 2013, 20: 101607. doi: 10.1063/1.4823470
    [12]
    Edamura M, Benck E C. Effects of voltage distribution along an induction coil and discharge frequency in inductively coupled plasmas[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces and Films, 2004, 22(2): 293-301.
    [13]
    Ding Z F, Yuan G Y, Gao W, et al. Effects of impedance matching network on the discharge mode transitions in a radio-frequency inductively coupled plasma[J]. Physics of Plasmas, 2008, 15: 063506. doi: 10.1063/1.2931038
    [14]
    沈苑, 王瑞雪, 章程, 等. 微秒脉冲激励的大气压氦等离子体射流放电特性[J]. 强激光与粒子束, 2016, 28: 055001. doi: 10.11884/HPLPB201628.055001

    Shen Yuan, Wang Ruixue, Zhang Cheng, et al. Characterization of atmospheric pressure helium plasma jet driven by microsecond pulse. High Power Laser and Particle Beams, 2016, 28: 055001 doi: 10.11884/HPLPB201628.055001
    [15]
    Lee M H, Chung C W. Observation of inverse hysteresis in the E to H mode transitions in inductively coupled plasmas[J]. Plasma Sources Science and Technology, 2010, 19: 015011. doi: 10.1088/0963-0252/19/1/015011
    [16]
    彭永伦, 杨莉, 王民盛, 等. 等离子体X射线吸收谱及发射谱研究[J]. 强激光与粒子束, 2002, 14(3): 389-393. http://www.hplpb.com.cn/article/id/1307

    Peng Yonglun, Yang Li, Wang Minsheng, et al. X-ray absorption spectra and emission spectra of plasmas. High Power Laser and Particle Beams, 2002, 14(3): 389-393 http://www.hplpb.com.cn/article/id/1307
    [17]
    何永乐, 高俊, 左都罗, 等. 大气压He-Ar射频容性放电Ar亚稳态粒子数密度[J]. 强激光与粒子束, 2017, 29: 051002. doi: 10.11884/HPLPB201729.160465

    He Yongle, Gao Jun, Zuo Duluo, et al. Ar metastable particle number density of He-Ar RF capacitive discharge at atmospheric pressure. High Power Laser and Particle Beams, 2017, 29: 051002 doi: 10.11884/HPLPB201729.160465
    [18]
    杜寅昌, 曹金祥, 汪建, 等. 射频电感耦合夹层等离子体中的模式转换[J]. 物理学报, 2012, 61: 195206. doi: 10.7498/aps.61.195206

    Du Yinchang, Cao Jinxiang, Wang Jian, et al. Mode transition of inductively coupled plasma in interlayer chamber. Acta Physica Sinica, 2012, 61: 195206 doi: 10.7498/aps.61.195206
    [19]
    Song H Y, Kim C W, Pard S G, et al. Dependence of etch selectivity of SiO2 etching on the axial magnetic field added to ICP[J]. Journal of the Korean Physical Society, 2004, 45: S748-S751.
    [20]
    Hoam O B, Jeong J S, Park S G. Improvement of ICP plasma with periodic control of axial magnetic field[J]. Surface and Coatings Technology, 1999, 120/121: 752-756.
    [21]
    Lee Y J, Kim K N, Song B K, et al. Linear internal inductively coupled plasma (ICP) source with magnetic fields for large area processing[J]. Thin Solid Films, 2003, 435(1): 275-279.
    [22]
    Kim K N, Lim J H, Park J K, et al. Plasma characteristics and antenna electrical characteristics of an internal linear inductively coupled plasma source with a multi-polar magnetic field[J]. Plasma Chemistry & Plasma Processing, 2008, 28(1): 147-158.
    [23]
    Kim K N, Lim J H, Yeom G Y. Plasma and antenna characteristics of a linearly extended inductively coupled plasma system using multi-polar magnetic field[J]. Thin Solid Films, 2007, 515(12): 5193-5196.
    [24]
    王品乐. 弱磁场对柱面感性耦合等离子体参数径向分布的影响[D]. 大连: 大连理工大学, 2014.

    Wang Pinle. The effects of weak magnetic field on radial characteristics profile of cylindrical inductively coupled plasma. Dalian: Dalian University of Technology, 2014
    [25]
    乔馨慧. 磁场对容性及感应耦合等离子体性质影响的数值模拟研究[D]. 武汉: 华中科技大学, 2014.

    Qiao Xinhui. Numerical simulation study of influence of magnetic field on the capacitive inductively coupled plasma. Wuhan: Huazhong University of Science of Technology, 2014
    [26]
    郑春开. 等离子体物理[M]. 北京: 北京大学出版社, 2009.

    Zheng Chunkai. Plasma Physics. Beijing: Peking University Press, 2009
    [27]
    Lee Y W, Lee H L, Chung T H. E-H mode transition in low-pressure inductively coupled nitrogen-argon and oxygen-argon plasmas[J]. Journal of Applied Physics, 2011, 109: 113302.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (1009) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return