Volume 31 Issue 3
Mar.  2019
Turn off MathJax
Article Contents
Zhou Shouli, Chen Ruitao, Zhou Shancheng, et al. Design of X~Ku band broadband driver amplifier[J]. High Power Laser and Particle Beams, 2019, 31: 033002. doi: 10.11884/HPLPB201931.180342
Citation: Zhou Shouli, Chen Ruitao, Zhou Shancheng, et al. Design of X~Ku band broadband driver amplifier[J]. High Power Laser and Particle Beams, 2019, 31: 033002. doi: 10.11884/HPLPB201931.180342

Design of X~Ku band broadband driver amplifier

doi: 10.11884/HPLPB201931.180342
  • Received Date: 2018-11-29
  • Rev Recd Date: 2019-02-24
  • Publish Date: 2019-03-15
  • In this paper, an X~Ku band broadband 1 W driver amplifier MMIC based on 0.25 μm GaN HEMT on SiC process is designed. The design uses an equivalent RC model of active devices' large-signal output impedance for verifying the accuracy of the GaN HEMT process model. And large-signal output impedances of GaN HEMT with different dimensions are achieved. Negative feedback structure is applied for the first-stage transistor to reduce the Q value of the matching network. The broadband matching is successfully achieved through band-pass matching network topology. The measurement results show that this driver amplifier at 28 V operation voltage achieved over 30 dBm output power, 21% power added efficiency and 15 dB power gain from 8 GHz to 18 GHz. The chip size is 2.20 mm×1.45 mm. The MMIC chip has the characteristics of wide bandwidth, high efficiency and small size. It can be mainly used in fields such as millimeter-wave transceiver components and wireless communication, and has broad application prospect.
  • loading
  • [1]
    Fagotti R, Cidronali A, Manes G. Concurrent Hex-Band GaN power amplifier for wireless communication systems[J]. IEEE Microwave and Wireless Components Letters, 2011, 21(2): 89-91. doi: 10.1109/LMWC.2010.2098859
    [2]
    Zhou Xing, Roy L, Amaya R E. 1 W, Highly efficient, ultra-broadband non-uniform distributed power amplifier in GaN[J]. IEEE Microwave and Wireless Components Letters, 2013, 23(4): 208-210. doi: 10.1109/LMWC.2013.2250270
    [3]
    Chu Chenkuo, Huang H, Liu Hongzhi, et al. An X-band high-power and high-PAE PHEMT MMIC power amplifier for pulse and CW operation[J]. IEEE Microwave and Wireless Components Letters, 2008, 18(10): 707-709. doi: 10.1109/LMWC.2008.2003485
    [4]
    Yao Hongfei, Yuan Tingting, Liu Guoguo, et al. X-band 11. 7-W, 29-dB gain, 42% PAE three-stage pHEMT MMIC power amplifier[C]//IEEE 2015 Asia-pacific Microwave Conference. 2015: 1-3.
    [5]
    Qorvo. X band driver PA, TGA2700[OL]. http://www.triquint.com/products/p/TGA2700.
    [6]
    曾志, 徐全胜, 高学邦. X波段宽带单片驱动功率放大器[J]. 半导体技术, 2013, 38(6): 424-428. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTJ201306008.htm

    Zeng Zhi, Xu Quansheng, Gao Xuebang. X-band broadband monolithic drive power amplifier. Semiconductor Technology, 2013, 38(6): 424-428 https://www.cnki.com.cn/Article/CJFDTOTAL-BDTJ201306008.htm
    [7]
    李远鹏, 赵炳忠, 魏洪涛, 等. 6~18 GHz宽带驱动放大器的研制[J]. 半导体技术, 2016, 41(6): 425-428. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTJ201606006.htm

    Li Yuanpeng, Zhao Bingzhong, Wei Hongtao, et al. Design of a 6~18 GHz broadband driver amplifier. Semiconductor Technology, 2016, 41(6): 425-428 https://www.cnki.com.cn/Article/CJFDTOTAL-BDTJ201606006.htm
    [8]
    Quaglia R, Camarchia V, Rubio J J M, et al. A 4-W Doherty power amplifier in GaN MMIC technology for 15-GHz applications[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(4): 365-367. doi: 10.1109/LMWC.2017.2678440
    [9]
    Kuwata E, Yamanaka K, Kirikoshi T, et al. C-Ku band 120% relative bandwidth high efficiency high power amplifier using GaN HEMT[C]//IEEE 2009 Asia-pacific Micromave Conference. 2009: 1663-1666.
    [10]
    Kuhn J, Raay F V, Quay R, et al. Design of X-band GaN MMICs using field plates[C]//IEEE European Microwve Integnated Circuits Conference. 2009: 33-36.
    [11]
    Lee S, Park H, Choi K, et al. A broadband GaN pHEMT power amplifier using non-Foster matching[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(12): 4406-4414. doi: 10.1109/TMTT.2015.2495106
    [12]
    Chen K, Peroulis D. Design of highly efficient broadband Class-E power amplifier using synthesized low-pass matching networks[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(12): 3162-3173. doi: 10.1109/TMTT.2011.2169080
    [13]
    Schmid U, Sledzik H, Schuh P, et al. Ultra-wideband GaN MMIC chip set and high power amplifier module for multi-function defense AESA applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(8): 3043-3051. doi: 10.1109/TMTT.2013.2268055
    [14]
    Barisich G C, Gebara E, Gu Huifang, et al. Reactively matched 3-stage C-X-Ku band GaN MMIC power amplifier[C]//IEEE European Microwave Integrated Circuits Conference. 2017: 93-96.
    [15]
    Formicone G, Burger J, Custer J, et al. A study for achieving high power and efficiency based on high bias operation in C- and X-band GaN power amplifiers[C]//IEEE Conference on RF/Microwave Power Amplifiers for Radio and Wireless Application. 2018: 39-42.
    [16]
    Meng Xiangyu, Yu Cuiping, Liu Yuanan, et al. Design approach for implementation of Class-J broadband power amplifiers using synthesized band-pass and low-pass matching topology[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(12): 4984-4996. doi: 10.1109/TMTT.2017.2711021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (1180) PDF downloads(114) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return