Li Xin. Laser ray-tracing phenomenal model at far field[J]. High Power Laser and Particle Beams, 2015, 27: 032003. doi: 10.11884/HPLPB201527.032003
Citation: Chen Shuo, Zheng Chun, Du Jinfeng. Numerical simulation of stress properties on high-yield fast-neutron-burst reactor in super-prompt-critical condition[J]. High Power Laser and Particle Beams, 2019, 31: 056004. doi: 10.11884/HPLPB201931.180347

Numerical simulation of stress properties on high-yield fast-neutron-burst reactor in super-prompt-critical condition

doi: 10.11884/HPLPB201931.180347
  • Received Date: 2018-12-01
  • Rev Recd Date: 2019-01-25
  • Publish Date: 2019-05-15
  • The performance of fast burst reactor (FBR) is mainly restricted by the physical damage caused by the mechanical shock. The smaller burst width and larger fission yield in high-yield FBRs indicate more significant stress variation. To obtain the temporal and spatial distributions of stress/strain of burst in the high-yield FBR and to provide technical support for the design and safety analysis of new-type FBRs, the neutronic calculation based on the point kinetic approximation and Monte Carlo method is first performed to obtain the temporal and spatial distributions of fission power in the cylindrical FBR Godiva IV, the three-dimensional thermoelastic behavior in the burst is then simulated by using the finite element method software ANSYS Mechanical. The dynamic response of stress in material component is obtained and analyzed. The results show that the cylindrical fuel will suffer a stress wave during the burst and the maximum stress occurs in the radial cracking of central fuel rings.
  • [1]
    贺仁辅, 邓门才. 快中子临界装置和脉冲堆实验物理[M]. 北京: 国防工业出版社, 2012.

    He Renfu, Deng Mencai. Experiments and physics on fast-neutron critical facilities and pulsed reactors. Beijing: National Defense Industry Press, 2012
    [2]
    Canaan R E. Dynamic response of a pulse-heated thick-walled hollow sphere: Validation of Code Numerics[R]. UCRL-ID-137326, 2000.
    [3]
    梁文峰, 邱东, 杨成德, 等. 燃料元件在热冲击下基于ANSYS的动态响应仿真[J]. 科学技术与工程, 2014, 14(20): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201420012.htm

    Liang Wenfeng, Qiu Dong, Yang Chengde, et al. Dynamic response simulation of the fuel component under thermal shock with ANSYS. Science Technology and Engineering, 2014, 14(20): 51-55 https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201420012.htm
    [4]
    Mosteller R D, Goda J M. Analysis of Godiva-Ⅳ delayed-critical and static super-prompt-critical conditions[R]. LA-UR-09-01007, 2009.
    [5]
    Kimpland R H. Preliminary results of Godiva-Ⅳ Prompt Burst Modeling[R]. LA-UR-96-1498, 1996.
    [6]
    Wimett T F. Dynamic and power prediction in fission bursts[J]. Nuclear Science and Engineering, 1992, 110: 209-236. doi: 10.13182/NSE90-149
    [7]
    Hickman D P, Heinrichs D P, Hudson R. Dosimetry characterization of the Godiva reactor under burst conditions[R]. LLNL-TR-729408, 2017.
    [8]
    高辉, 刘晓波, 范小强. 反应性动态加入对脉冲堆中子脉冲波形的影响[J]. 核动力工程, 2013, 34(2): 68-71. https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG201302015.htm

    Gao Hui, Liu Xiaobo, Fan Xiaoqiang. Effects of loading reactivity at dynamic state on wave of neutrons in burst reactor. Nuclear Power Engineering, 2013, 34(2): 68-71 https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG201302015.htm
    [9]
    李兵, 范小强, 邓门才. 快中子脉冲堆动力学特性研究[J]. 核电子学与探测技术, 2001, 21(4): 277-280. doi: 10.3969/j.issn.0258-0934.2001.04.012

    Li Bing, Fan Xiaoqiang, Deng Mencai. Dynamic character research of fast neutron burst reactor. Nuclear Electronics & Detection Technology. 2001, 21(4): 277-280 doi: 10.3969/j.issn.0258-0934.2001.04.012
    [10]
    邱东. 快中子脉冲反应堆脉冲爆发时堆体应力分布的数值模拟[J]. 核动力工程, 2004, 25(1): 74-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG200401017.htm

    Qiu Dong. Numerical simulation of the stress distribution for fast burst reactor under pulsed operation. Nuclear Power Engineering, 2004, 25(1): 74-82 https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG200401017.htm
    [11]
    Kozlov E A, Pankratov D G, Tarzhanov V I, et al. Spall strength characteristics of a U-1.5%Mo alloy during explosive loading at various intensities[J]. Russian Metallurgy, 2010, 10: 895-903.
  • Relative Articles

    [1]Zhang Tianyang, Huang Tao, Cong Peitian, Luo Weixi, Yin Jiahui, Zhai Rongxiao. Assembly design of switch and capacitor for fast linear transformer driver primary discharge unit[J]. High Power Laser and Particle Beams, 2024, 36(11): 115015. doi: 10.11884/HPLPB202436.240291
    [2]Lu Honglin, Wu Xinjie, Zhang Debin, Qu Chengzhi, Zhang Zhongsong, Zhang Yu. Modeling and analysis of power processing unit based on secondary-side LLC resonant converter[J]. High Power Laser and Particle Beams, 2024, 36(2): 025021. doi: 10.11884/HPLPB202436.230171
    [3]Xie Xiangyu, Wang Peng, Deng Ying, Zhou Kainan, Feng Guoying. Ray tracing model of digital holography with single element interference[J]. High Power Laser and Particle Beams, 2023, 35(5): 059002. doi: 10.11884/HPLPB202335.220396
    [4]Rong Fan, Zhong Longquan, Liu Qiang, Yan Liping, Zhao Xiang. Modeling and statistical analysis of distribution parameters of random cable bundles based on image recognition technology[J]. High Power Laser and Particle Beams, 2021, 33(5): 053002. doi: 10.11884/HPLPB202133.210007
    [5]Shen Yi, Zhang Huang, Liu Yi, Wang Wei, Ye Mao, Xia Liansheng, Shi Jinshui, Zhang Linwen, Deng Jianjun. Circuit coupling and decoupling between accelerating units of dielectric wall linear accelerator[J]. High Power Laser and Particle Beams, 2016, 28(04): 045003. doi: 10.11884/HPLPB201628.125003
    [6]Luo Shiwen, Zuo Duluo, Wang Xinbing. Kinetic simulation of discharge excited ArF excimer laser and parameter analysis[J]. High Power Laser and Particle Beams, 2015, 27(08): 081006. doi: 10.11884/HPLPB201527.081006
    [7]Huang Yanhua, Song Chengwei, Zhang Junjie, Sun Tao. Molecular dynamics modelling and simulating of femtosecond laser ablation of polymers[J]. High Power Laser and Particle Beams, 2014, 26(12): 124102. doi: 10.11884/HPLPB201426.124102
    [8]Cui Ding, Su Youbin, Cui Yunjun, Xian Yuqiang, Zhang Wei. Hybrid modeling method based on solid element and shell element in microwave structure[J]. High Power Laser and Particle Beams, 2013, 25(S0): 106-110.
    [9]Hao Qingsong, Ding ZHenjie, Fan Juping, Yu Jianguo, Yuan Xuelin, Pan Yafeng, Hu Long, Fang Xu, Wang Gang, Su Jiancang. Design of primary unit of high repetition frequency pulsed power generator[J]. High Power Laser and Particle Beams, 2012, 24(10): 2479-2482. doi: 10.3788/HPLPB20122410.2479
    [10]Zhang Xianpeng, Zhang Mei, Sheng Liang, Ouyang Xiaoping. Simulation research of neutron scatter camera with five units[J]. High Power Laser and Particle Beams, 2012, 24(10): 2464-2468. doi: 10.3788/HPLPB20122410.2464
    [11]Chen Shaowu, Zhang Jianmin, Yuwen Cuilei, Feng Gang. 中红外高能激光探测单元[J]. High Power Laser and Particle Beams, 2012, 24(06): 1306-1310. doi: 10.3788/HPLPB20122406.1306
    [12]Wang Qingfeng, Liu Qingxiang, Li Xiangqiang, Zhang Zhengquan, Xu Yuancan, Hu Kesong. Double-cell experimental study of linear transformer drivers[J]. High Power Laser and Particle Beams, 2012, 24(04): 789-792. doi: 10.3788/HPLPB20122404.0789
    [13]he dayong, chi yunlong, . Design and multi-cell test of Marx solid-state modulator[J]. High Power Laser and Particle Beams, 2011, 23(10): 0- .
    [14]he dayong, chi yunlong, . Marx solid-stage modulator cell for International Linear Collider[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [15]chen minsun, jiang houman, liu zejin. Determination of thermal decomposition kinetic parameters of glass-fiber/epoxy composite[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- .
    [16]yang peng-ling, feng guo-bin, wang qun-shu, yan yan, cheng jian-ping. Design and implement of detecting module for mid-infrared laser power density measurement[J]. High Power Laser and Particle Beams, 2008, 20(08): 0- .
    [17]li zhi-hui, ratzinger u. Optimization of room temperature CH-cavity with cell-cavity approximation[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- .
    [18]xia ming-he, li hong-tao, yao bin, feng shu-ping, wang yu-juan, meng wei-tao, wei bing, he an, ji ce, tian qing, fu zhen, ding sheng, ren jing, qing yan-ling, xie wei-ping. Investigation of pulse forming line section of pulse power machine[J]. High Power Laser and Particle Beams, 2007, 19(09): 0- .
    [19]tang chuan xiang, tian kai, chen huai bi, li quan feng, jiang zhan feng, wang ying, xu yi yong. Beam dynamics researches on micropulse electron gun[J]. High Power Laser and Particle Beams, 2003, 15(08): 0- .
    [20]yu hai-jun, shi jin-shui. Dynamics behavior of backstreaming ions[J]. High Power Laser and Particle Beams, 2001, 13(02): 0- .
  • Cited by

    Periodical cited type(3)

    1. 程显,夏荣翔,葛国伟,连昊宇,吕彦鹏,陈硕. 基于感应叠加原理的模块化脉冲电源的研制. 高电压技术. 2021(03): 778-785 .
    2. 马剑豪,何映江,余亮,董守龙,姚陈果. 应用于模块化高压纳秒脉冲源的SiC与射频Si基MOSFET瞬态开关特性对比研究. 中国电机工程学报. 2020(06): 1817-1829 .
    3. 吴兆康,陈希有,牟宪民,吴茂鹏. 基于多变压器的双极性Marx电路. 电工电能新技术. 2020(11): 59-65 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 29.6 %FULLTEXT: 29.6 %META: 68.7 %META: 68.7 %PDF: 1.7 %PDF: 1.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.5 %其他: 4.5 %其他: 0.1 %其他: 0.1 %China: 0.4 %China: 0.4 %India: 0.0 %India: 0.0 %United States: 0.1 %United States: 0.1 %[]: 0.1 %[]: 0.1 %三明: 0.0 %三明: 0.0 %上海: 1.7 %上海: 1.7 %东莞: 0.0 %东莞: 0.0 %东营: 0.0 %东营: 0.0 %中山: 0.0 %中山: 0.0 %临汾: 0.1 %临汾: 0.1 %丹东: 0.0 %丹东: 0.0 %休斯敦: 0.0 %休斯敦: 0.0 %佛山: 0.0 %佛山: 0.0 %保定: 0.0 %保定: 0.0 %兴安盟: 0.1 %兴安盟: 0.1 %北京: 19.1 %北京: 19.1 %十堰: 0.0 %十堰: 0.0 %南京: 0.2 %南京: 0.2 %博阿努瓦: 0.0 %博阿努瓦: 0.0 %厦门: 0.0 %厦门: 0.0 %台州: 0.2 %台州: 0.2 %合肥: 0.0 %合肥: 0.0 %吕梁: 0.0 %吕梁: 0.0 %呼和浩特: 0.1 %呼和浩特: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %嘉义: 0.2 %嘉义: 0.2 %大连: 0.3 %大连: 0.3 %天津: 0.5 %天津: 0.5 %安康: 0.2 %安康: 0.2 %宣城: 0.1 %宣城: 0.1 %岳阳: 0.0 %岳阳: 0.0 %布达佩斯: 0.0 %布达佩斯: 0.0 %常州: 0.1 %常州: 0.1 %广州: 0.3 %广州: 0.3 %张家口: 0.1 %张家口: 0.1 %惠州: 0.0 %惠州: 0.0 %成都: 0.4 %成都: 0.4 %扬州: 0.2 %扬州: 0.2 %文昌: 0.0 %文昌: 0.0 %斯特灵: 0.0 %斯特灵: 0.0 %新乡: 0.0 %新乡: 0.0 %昆明: 0.0 %昆明: 0.0 %晋城: 0.1 %晋城: 0.1 %普洱: 0.0 %普洱: 0.0 %杜伊斯堡: 0.0 %杜伊斯堡: 0.0 %杭州: 1.3 %杭州: 1.3 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.4 %沈阳: 0.4 %济南: 0.2 %济南: 0.2 %海口: 0.0 %海口: 0.0 %深圳: 0.1 %深圳: 0.1 %温州: 0.0 %温州: 0.0 %湖州: 0.2 %湖州: 0.2 %漯河: 0.2 %漯河: 0.2 %瓜达拉哈拉: 0.1 %瓜达拉哈拉: 0.1 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.0 %秦皇岛: 0.0 %绵阳: 0.5 %绵阳: 0.5 %芒廷维尤: 21.5 %芒廷维尤: 21.5 %芝加哥: 0.0 %芝加哥: 0.0 %苏州: 0.3 %苏州: 0.3 %莱芜: 0.2 %莱芜: 0.2 %衢州: 0.7 %衢州: 0.7 %西宁: 40.9 %西宁: 40.9 %西安: 0.2 %西安: 0.2 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.9 %运城: 0.9 %邯郸: 0.0 %邯郸: 0.0 %郑州: 0.2 %郑州: 0.2 %重庆: 0.4 %重庆: 0.4 %金华: 0.0 %金华: 0.0 %镇江: 0.0 %镇江: 0.0 %长春: 0.0 %长春: 0.0 %长沙: 0.5 %长沙: 0.5 %长治: 0.0 %长治: 0.0 %其他其他ChinaIndiaUnited States[]三明上海东莞东营中山临汾丹东休斯敦佛山保定兴安盟北京十堰南京博阿努瓦厦门台州合肥吕梁呼和浩特哥伦布嘉义大连天津安康宣城岳阳布达佩斯常州广州张家口惠州成都扬州文昌斯特灵新乡昆明晋城普洱杜伊斯堡杭州武汉沈阳济南海口深圳温州湖州漯河瓜达拉哈拉石家庄秦皇岛绵阳芒廷维尤芝加哥苏州莱芜衢州西宁西安贵阳运城邯郸郑州重庆金华镇江长春长沙长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (888) PDF downloads(51) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return