Volume 31 Issue 4
Apr.  2019
Turn off MathJax
Article Contents
Chai Mengjuan, Yu Daojie, Hu Junjie, et al. Electromagnetic interference effect of power supply in typical audio amplifier circuit[J]. High Power Laser and Particle Beams, 2019, 31: 040014. doi: 10.11884/HPLPB201931.180366
Citation: Chai Mengjuan, Yu Daojie, Hu Junjie, et al. Electromagnetic interference effect of power supply in typical audio amplifier circuit[J]. High Power Laser and Particle Beams, 2019, 31: 040014. doi: 10.11884/HPLPB201931.180366

Electromagnetic interference effect of power supply in typical audio amplifier circuit

doi: 10.11884/HPLPB201931.180366
  • Received Date: 2018-12-17
  • Rev Recd Date: 2019-03-01
  • Publish Date: 2019-04-15
  • The direct power injection method was used to study the effect of electromagnetic interference coupling on the power supply of typical audio power amplifier circuits. The electromagnetic interference coupling characteristics of typical audio power amplifier circuits were analyzed. The electromagnetic interference test platform based on the direct power injection method was designed to test the electromagnetic interference effect on the DC power signal of the circuit in the range of 0.1-1 GHz. The power thresholds for the critical distortion, typical distortion and full distortion of the circuit and their laws with the interference frequency were obtained. The results show that in the test frequency band, the distortion power threshold has the same relationship with the frequency under the three distortion states, and the difference of distortion power threshold is about 2 dBm. When the injection interference frequency is lower (100-300 MHz), the distortion power threshold is higher, and decreases with the increase of the frequency in the trend of power function approximately. When the injection interference frequency is higher than 300 MHz, the distortion power threshold tends to damped oscillation with the increase of the frequency. The use of electromagnetic interference can affect the normal operation of audio electronic devices, which provides a new thought for the study on ultra-wide spectrum electromagnetic interference effects of audio integrated circuits.
  • loading
  • [1]
    蒙林, 李天明, 李浩. 国外高功率微波发展综述[J]. 真空电子技术, 2015(2): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDJ201502002.htm

    Meng Lin, Li Tianming, Li Hao. Developments of high power microwave abroad. Vacuum Electronics, 2015(2): 8-12 https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDJ201502002.htm
    [2]
    钱宝良. 国外高功率微波技术的研究现状与发展趋势[J]. 真空电子技术, 2015(2): 2-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDJ201502001.htm

    Qian Baoliang. The research status and developing tendency of high power microwave technology in foreign countries. Vacuum Electronics, 2015(2): 2-7 https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDJ201502001.htm
    [3]
    席晓文, 柴常春, 刘阳, 等. 外界条件在电磁脉冲对GaAs赝高电子迁移率晶体管损伤过程中的影响[J]. 物理学报, 2017, 66: 078401. doi: 10.7498/aps.66.078401

    Xi Xiaowen, Chai Changchun, Liu Yang, et al. Influence of the external condition on the damage process of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse. Acta Physica Sinica, 2017, 66: 078401 doi: 10.7498/aps.66.078401
    [4]
    马振洋. 双极晶体管微波损伤效应与机理研究[D]. 西安: 西安电子科技大学, 2013.

    Ma Zhenyang. Research on the damage effect and mechanism of bipolar transistor caused by microwaves. Xi'an: Xidian University, 2013
    [5]
    Zhou L, Zheng W S, Hua Y J, et al. Investigation on failure mechanisms of GaN HEMT caused by high-power microwave(HPM) pulses[J]. IEEE Trans Electromagnetic Compatibility, 2017, 99: 1-8.
    [6]
    Zhou L, San Z W, Lin L, et al. Electro-thermal-stress interaction of GaN HEMT breakdown induced by high power microwave pulses[C]//IEEE Asia-Pacific International Symposium on Electromagnetic Compatibility. 2016: 642-644.
    [7]
    程笑林. 场效应管瞬态电热特性的谱元法分析[D]. 南京: 南京理工大学, 2015.

    Cheng Xiaolin. Analysis of FET's transient electrothermal characteristics by spectral element method. Nanjing: Nanjing University of Science & Technology, 2015
    [8]
    陈杰, 杜正伟. CMOS反相器的电磁干扰频率效应[J]. 强激光与粒子束, 2012, 24(1): 147-151 http://www.hplpb.com.cn/article/id/5832

    Chen Jie, Du Zhengwei. Effect of electromagnetic interference frequency on CMOS inverters. High Power Laser and Particle Beams, 2012, 24(1): 147-151. http://www.hplpb.com.cn/article/id/5832
    [9]
    Yi S, Du Z. The influence of microwave pulse width on the thermal burnout effect of an LNA constructed by a GaAs PHEMT[J]. Microelectronics Reliability, 2018, 85(1): 140-147.
    [10]
    胡凯, 李天明, 汪海洋, 等. 多级PIN限幅器高功率微波效应研究[J]. 强激光与粒子束, 2014, 26: 063015. doi: 10.11884/HPLPB201426.063015

    Hu Kai, Li Tianming, Wang Hai, et al. High power microwave effect of multi-stage PIN limiter. High Power Laser and Particle Beams, 2014, 26: 063015 doi: 10.11884/HPLPB201426.063015
    [11]
    Redouté J M, Steyaert M. EMC of analog integrated circuits[C]//Analog Circuits & Signal Processing. 2010.
    [12]
    Fiori F. EMI-induced distortion of baseband signals in current feedback instrumentation amplifiers[J]. IEEE Trans Electromagnetic Compatibility, 2018, 99: 1-8.
    [13]
    Fermi U, Fiumara A, Rossi G. An innovative mathematical model of RF-induced quiescent point shift in a BJT[J]. IEEE Trans Electromagnetic Compatibility, 1996, 38(3): 244-249.
    [14]
    Richardson RE. Quiescent operating point shift in bipolar transistors with AC excitation[J]. IEEE Journal of Solid-State Circuits, 1980, 14(6): 1087-1094.
    [15]
    Richardson R E. Modeling of low-level rectification RFI in bipolar circuitry[J]. IEEE Trans Electromagnetic Compatibility, 1979, 21(4): 307-311.
    [16]
    IEC 62132-4, IC's measurement of E/M immunity 150 kHz to 1 GHz—Part 4: Direct RF power injection method[S].
    [17]
    王长河. 高功率微波和电磁脉冲对半导体器件辐射损伤的研究[J]. 微纳电子技术, 1997, 34(1): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ199701002.htm

    Wang Changhe. Study on the effect of HPM and EMP radiation damage on semiconductor devices. Micronanoelectronic Technology, 1997, 34(1): 9-16 https://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ199701002.htm
    [18]
    刘波. 半导体器件的高功率微波毁伤阈值数值计算研究[D]. 成都: 电子科技大学, 2004: 19.

    Liu Bo. Numerical calculation of high power microwave damage threshold for semiconductor devices. Chengdu: University of Electronic Science and Technology of China, 2004: 19
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (1654) PDF downloads(117) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return