Bi Bi, Zhou Weimin, Shan Lianqiang, et al. Density diagnosis based on ps-duration-pulse X-ray backlighting for fast ignition compression[J]. High Power Laser and Particle Beams, 2020, 32: 042001. doi: 10.11884/HPLPB202032.200050
Citation: Li Bo, Wang Jun. Parameter extraction technique of millimeter wave small-signal equivalent circuit model of 45 nm MOSFET[J]. High Power Laser and Particle Beams, 2019, 31: 024101. doi: 10.11884/HPLPB201931.180374

Parameter extraction technique of millimeter wave small-signal equivalent circuit model of 45 nm MOSFET

doi: 10.11884/HPLPB201931.180374
  • Received Date: 2018-12-20
  • Rev Recd Date: 2019-01-24
  • Publish Date: 2019-02-15
  • With the development of channel down-scaling of low-voltage low-power CMOS technology, the optimal operation points are shown to shift from the strong inversion toward lower moderated inversion and weak inversion regimes. High-frequency equivalent circuit modeling is a prerequisite for finding the physical mechanism of MOSFET device, and is essential for the HF integrated circuits. Based on the physical structure of 45 nm MOSFET device and its Y parameters analysis, a quasi-static approximate RF equivalent circuit model and its high-precision simplified parameter extraction algorithm is proposed by taking into account the intrinsic physical characteristics of the device, the electromagnetic characteristics of the pin and the parasitic characteristics of the test pad and test interconnects, which are used to describe the bias dependence from the strong inversion and weak inversion regimes. Therefore, the device characterizations offer excellent accuracy, continuity and smoothness under different bias condition, and can be easily implanted into commercial EDA tools. Direct extraction method is performed by S-parameter analysis including the intrinsic and the extrinsic components and the substrate-related effect. Finally, the practicability and the accuracy of the proposed model and its parameters extract algorithm are verified by the consistency comparison of the simulated results by using ADS2013 tool and the measured S parameters. The experimental results show the bias dependence of 45nm MOSFET.
  • [1]
    Parvizi M, Allidina K, El-Gamal M N. A sub-mW, ultra-low-voltage, wideband low-noise amplifier design technique[J]. IEEE Trans Very Large Scale Integration Systems, 2015, 23(6): 1111-1122. doi: 10.1109/TVLSI.2014.2334642
    [2]
    Do A V, Boon C C, Do M A, et al. A subthreshold low-noise amplifier optimized for ultra-low-power applications in the ISM band[J]. IEEE Trans Microwave Theory & Techniques, 2008, 56(2): 286-292. https://dr.ntu.edu.sg/handle/10220/4678
    [3]
    王军, 戴逸松. 低噪声前放中集成运放电路的En-In噪声性能分析[J]. 仪器仪表学报, 1998, 19(4): 352-357. doi: 10.3321/j.issn:0254-3087.1998.04.004

    Wang Jun, Dai Yisong. En-In noise performance analysis of integrated operational circuit in low-noise preamplifier. Chinese Journal of Scientific Instrument, 1998, 19(4): 352-357 doi: 10.3321/j.issn:0254-3087.1998.04.004
    [4]
    Lee C I. An improved cascade-based noise deembedding method for on-wafer noise parameters measurements[J]. IEEE Trans Electron Devices Letters, 2015, 36(4): 291-293. doi: 10.1109/LED.2015.2405915
    [5]
    Yeh K L. Narrow-width effect on high-frequency performance and RF noise of sub-40-nm multifinger nMOSFETs and pMOSFETs[J]. IEEE Transactions on Electron Devices, 2013, 60(1): 109-116. doi: 10.1109/TED.2012.2228196
    [6]
    王军, 王林, 王丹丹. 40 nm金属氧化物半导体场效应晶体管感应栅极噪声及互相关噪声频率与偏置依赖性建模[J]. 物理学报, 2016, 65: 237102. doi: 10.7498/aps.65.237102

    Wang Jun, Wang Lin, Wang Dandan. Frequency and bias dependent modeling of induced gate noise and cross-correlation noise in 40 nm metal-oxide-semiconductor field-effect transistors. Acta Physica Sinica, 2016, 65: 237102 doi: 10.7498/aps.65.237102
    [7]
    Enz C C, Cheng Y. MOS transistor modeling for RF IC design[J]. IEEE Journal of Solid-State Circuits, 2000, 35(2): 186-201. doi: 10.1109/4.823444
    [8]
    Cheng Yuhua. MOSFET modeling for RF IC design[J]. IEEE Trans Electron Devices, 2005, 52(7): 1286-1303. doi: 10.1109/TED.2005.850656
    [9]
    Poulain L, Waldhoff N, Gloria D, et al. Small signal and HF noise performance of 45 nm CMOS technology in mmW range[C]//IEEE Radio Frequency Integrated Circuits Symposium. 2011: 1-4.
    [10]
    Enz C. An MOS transistor model for RF IC design valid in all regions of operation[J]. IEEE Trans Microwave Theory & Techniques, 2002, 50(1): 342-359. https://ieeexplore.ieee.org/document/981286
    [11]
    Chan L H K, Yeo K S, Chew K W J, et al. High-frequency noise modeling of MOSFETs for ultra low-voltage RF applications[J]. IEEE Trans Microwave Theory & Techniques, 2015, 63(1): 141-154. https://www.sciencedirect.com/science/article/pii/S0038110198001920
    [12]
    Chalkiadaki M A, Enz C C. RF small-signal and noise modeling including parameter extraction of nanoscale MOSFET from weak to strong inversion[J]. IEEE Trans Microwave Theory & Techniques, 2015, 63(7): 1-12. https://ieeexplore.ieee.org/document/7109953/
    [13]
    Enz C C, Vittoz E A. Charge-based MOS transistor modeling: The EKV model for low-power and RF IC design[M]. New York: John Wiley, 2006.
    [14]
    Issaoun A, Xiong Y Z, Shi J, et al. On the deembedding issue of CMOS multigigahertz measurements[J]. IEEE Trans Microwave Theory & Techniques, 2007, 55(9): 1813-1823.
    [15]
    Frickey D A. Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances[J]. IEEE Trans Microwave Theory & Techniques, 1994, 42(2): 205-211. https://ieeexplore.ieee.org/document/275248/
  • Relative Articles

    [1]Rong Linyan, Mu Zhencheng, Zhou Wenzhong, Wan Maliang, Xie Zhexin, Wang Bo, Liu Meifei, Li Jian, Xu Xin’an, Zhang Hui, Li Song, Ouyang Huafu, Fu Shinian. RF power source system for boron neutron capture therapy test facility[J]. High Power Laser and Particle Beams, 2021, 33(5): 053007. doi: 10.11884/HPLPB202133.200307
    [2]Ji Ce, Zhou Liangji, Jiao Jian, Ren Fuchun, Chen Lin, Jiang Jihao, Zhao Yue. Reliability of large LTD device analysis[J]. High Power Laser and Particle Beams, 2018, 30(4): 045003. doi: 10.11884/HPLPB201830.170341
    [3]He Lu, Dai Bo, Zhang Dawei. Data compression for optical spectrum-encoding imaging system[J]. High Power Laser and Particle Beams, 2018, 30(9): 099002. doi: 10.11884/HPLPB201830.180090
    [4]Jiao Xiaoyi, Lin Jing, Cheng Xiaoming, Zhang Bin, Ding Yingchun. Imaging method for serial time-encoded amplified microscope[J]. High Power Laser and Particle Beams, 2016, 28(10): 101008. doi: 10.11884/HPLPB201628.160103
    [5]Zhang Yanhong, Sheng Liang, Zhang Mei. Simulation of ring-coded aperture imaging with space-variant point spread function and image restoration[J]. High Power Laser and Particle Beams, 2016, 28(12): 124003. doi: 10.11884/HPLPB201628.160067
    [6]Yang Pin, Yang Zhenghua, Li Jin, Dong Jianjun, Cao Zhurong, Yan Yadong, Wang Wei, Wei Mingzhi, Liu Shenye. Design and development of a static X-ray imaging system used on SG-Ⅲ laser facility[J]. High Power Laser and Particle Beams, 2013, 25(11): 2895-2899. doi: 10.3788/HPLPB20132511.2895
    [7]Yu Bo, Su Ming, Huang Tianxuan, Chen Bolun, Jiang Wei, Pu Yudong, Yan Ji, Liu Shenye. Designing of diagnostic system for neutron penumbral imaging based on Shenguang-Ⅲ facility[J]. High Power Laser and Particle Beams, 2013, 25(10): 2604-2610. doi: 10.3788/HPLPB20132510.2604
    [8]Yu Bo, Su Ming, Liu ShenYe, Huang Tianxuan, Chen Bolun, Jiang Wei, Pu Yudong, Yan Ji. Simulation on spatial resolution of scintillator arrays based on neutron penumbral imaging system[J]. High Power Laser and Particle Beams, 2012, 24(08): 1826-1830. doi: 10.3788/HPLPB20122408.1826
    [9]xu tao, wang feng, peng xiaoshi, liu shenye. Imaging velocity interferometer system for any reflector based on SG-Ⅲ prototype laser facility[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- .
    [10]liu lifeng, xiao shali, qian jiayu, liu shenye, wei minxi, chen bolun. Monochromatic backlight imaging on Z-pinch facility[J]. High Power Laser and Particle Beams, 2011, 23(09): 0- .
    [11]yu bo, ying yangjun, xu haibo. Effect of scattered neutrons on point spread function in neutron penumbral imaging[J]. High Power Laser and Particle Beams, 2010, 22(11): 0- .
    [12]zhang xueshuang, zou yubin, lu yuanrong, tang guoyou, li hang, wen weiwei, wang sheng. Simulation of coded neutron source imaging by visible light[J]. High Power Laser and Particle Beams, 2010, 22(11): 0- .
    [13]hao yi-dan, miao wen-yong, zhao zong-qing, yuan yong-teng. Analytic calculation of ellipticity error effect in neutron penumbral imaging[J]. High Power Laser and Particle Beams, 2007, 19(03): 0- .
    [14]liu yuan-qiong, gao dang-zhong, liu li-xiang, luo qing, ye cheng-gang. Phase-contrast imaging with micro-focus X-ray source[J]. High Power Laser and Particle Beams, 2006, 18(12): 0- .
    [15]liu dong-jian, tang chang-huan, zhao zong-qing, dong jian-jun, an zhu. Image reconstruction technique for neutron penumbra imaging[J]. High Power Laser and Particle Beams, 2006, 18(07): 0- .
    [16]zhao zong-qing, ding yong-kun, liu dong-jian, tang chang-huan, wen shu-huai, pu yi-kang. Numerical simulation of neutron penumbral imaging[J]. High Power Laser and Particle Beams, 2006, 18(07): 0- .
    [17]zheng zhi-jian, cao lei-feng, zhang bao-han, ding yong-kun, jiang shao-en, li chao guang. Primary investigation of X-ray tomography with Gabor zone plate encode holography technique[J]. High Power Laser and Particle Beams, 2003, 15(08): 0- .
    [18]cao lei feng, zheng zhi jian, ding yong kun, yu yan ning, li chao guang. Investigation of Xray ring aperture coded imaging technique[J]. High Power Laser and Particle Beams, 2003, 15(08): 0- .
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.8 %FULLTEXT: 15.8 %META: 81.7 %META: 81.7 %PDF: 2.5 %PDF: 2.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.1 %其他: 3.1 %Canton: 0.1 %Canton: 0.1 %China: 0.4 %China: 0.4 %India: 0.1 %India: 0.1 %Korea Republic of: 0.2 %Korea Republic of: 0.2 %United States: 0.5 %United States: 0.5 %[]: 0.1 %[]: 0.1 %上海: 1.3 %上海: 1.3 %中山: 0.1 %中山: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %北京: 14.2 %北京: 14.2 %北海: 0.1 %北海: 0.1 %十堰: 0.2 %十堰: 0.2 %南京: 0.3 %南京: 0.3 %台州: 0.5 %台州: 0.5 %合肥: 0.2 %合肥: 0.2 %呼和浩特: 0.2 %呼和浩特: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %天津: 0.4 %天津: 0.4 %太原: 0.2 %太原: 0.2 %安康: 0.2 %安康: 0.2 %宣城: 0.3 %宣城: 0.3 %宿迁: 0.2 %宿迁: 0.2 %广州: 0.3 %广州: 0.3 %张家口: 0.7 %张家口: 0.7 %成都: 0.4 %成都: 0.4 %扬州: 0.1 %扬州: 0.1 %新乡: 0.2 %新乡: 0.2 %昆明: 0.1 %昆明: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.7 %杭州: 0.7 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %洛阳: 0.2 %洛阳: 0.2 %淮安: 0.2 %淮安: 0.2 %深圳: 1.0 %深圳: 1.0 %湖州: 0.2 %湖州: 0.2 %漯河: 1.1 %漯河: 1.1 %玉林: 0.2 %玉林: 0.2 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 15.0 %芒廷维尤: 15.0 %芝加哥: 0.3 %芝加哥: 0.3 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 52.4 %西宁: 52.4 %西安: 0.7 %西安: 0.7 %贵港: 0.1 %贵港: 0.1 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.1 %运城: 0.1 %郑州: 0.9 %郑州: 0.9 %重庆: 0.4 %重庆: 0.4 %长沙: 0.3 %长沙: 0.3 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.1 %青岛: 0.1 %韩国蔚山: 0.2 %韩国蔚山: 0.2 %其他CantonChinaIndiaKorea Republic ofUnited States[]上海中山乌鲁木齐北京北海十堰南京台州合肥呼和浩特哥伦布嘉兴天津太原安康宣城宿迁广州张家口成都扬州新乡昆明普洱杭州桃园武汉洛阳淮安深圳湖州漯河玉林石家庄福州秦皇岛绵阳芒廷维尤芝加哥衡阳衢州西宁西安贵港贵阳运城郑州重庆长沙阳泉青岛韩国蔚山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article views (1269) PDF downloads(131) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return