Volume 31 Issue 2
Feb.  2019
Turn off MathJax
Article Contents
Li Bo, Wang Jun. Parameter extraction technique of millimeter wave small-signal equivalent circuit model of 45 nm MOSFET[J]. High Power Laser and Particle Beams, 2019, 31: 024101. doi: 10.11884/HPLPB201931.180374
Citation: Li Bo, Wang Jun. Parameter extraction technique of millimeter wave small-signal equivalent circuit model of 45 nm MOSFET[J]. High Power Laser and Particle Beams, 2019, 31: 024101. doi: 10.11884/HPLPB201931.180374

Parameter extraction technique of millimeter wave small-signal equivalent circuit model of 45 nm MOSFET

doi: 10.11884/HPLPB201931.180374
  • Received Date: 2018-12-20
  • Rev Recd Date: 2019-01-24
  • Publish Date: 2019-02-15
  • With the development of channel down-scaling of low-voltage low-power CMOS technology, the optimal operation points are shown to shift from the strong inversion toward lower moderated inversion and weak inversion regimes. High-frequency equivalent circuit modeling is a prerequisite for finding the physical mechanism of MOSFET device, and is essential for the HF integrated circuits. Based on the physical structure of 45 nm MOSFET device and its Y parameters analysis, a quasi-static approximate RF equivalent circuit model and its high-precision simplified parameter extraction algorithm is proposed by taking into account the intrinsic physical characteristics of the device, the electromagnetic characteristics of the pin and the parasitic characteristics of the test pad and test interconnects, which are used to describe the bias dependence from the strong inversion and weak inversion regimes. Therefore, the device characterizations offer excellent accuracy, continuity and smoothness under different bias condition, and can be easily implanted into commercial EDA tools. Direct extraction method is performed by S-parameter analysis including the intrinsic and the extrinsic components and the substrate-related effect. Finally, the practicability and the accuracy of the proposed model and its parameters extract algorithm are verified by the consistency comparison of the simulated results by using ADS2013 tool and the measured S parameters. The experimental results show the bias dependence of 45nm MOSFET.
  • loading
  • [1]
    Parvizi M, Allidina K, El-Gamal M N. A sub-mW, ultra-low-voltage, wideband low-noise amplifier design technique[J]. IEEE Trans Very Large Scale Integration Systems, 2015, 23(6): 1111-1122. doi: 10.1109/TVLSI.2014.2334642
    [2]
    Do A V, Boon C C, Do M A, et al. A subthreshold low-noise amplifier optimized for ultra-low-power applications in the ISM band[J]. IEEE Trans Microwave Theory & Techniques, 2008, 56(2): 286-292. https://dr.ntu.edu.sg/handle/10220/4678
    [3]
    王军, 戴逸松. 低噪声前放中集成运放电路的En-In噪声性能分析[J]. 仪器仪表学报, 1998, 19(4): 352-357. doi: 10.3321/j.issn:0254-3087.1998.04.004

    Wang Jun, Dai Yisong. En-In noise performance analysis of integrated operational circuit in low-noise preamplifier. Chinese Journal of Scientific Instrument, 1998, 19(4): 352-357 doi: 10.3321/j.issn:0254-3087.1998.04.004
    [4]
    Lee C I. An improved cascade-based noise deembedding method for on-wafer noise parameters measurements[J]. IEEE Trans Electron Devices Letters, 2015, 36(4): 291-293. doi: 10.1109/LED.2015.2405915
    [5]
    Yeh K L. Narrow-width effect on high-frequency performance and RF noise of sub-40-nm multifinger nMOSFETs and pMOSFETs[J]. IEEE Transactions on Electron Devices, 2013, 60(1): 109-116. doi: 10.1109/TED.2012.2228196
    [6]
    王军, 王林, 王丹丹. 40 nm金属氧化物半导体场效应晶体管感应栅极噪声及互相关噪声频率与偏置依赖性建模[J]. 物理学报, 2016, 65: 237102. doi: 10.7498/aps.65.237102

    Wang Jun, Wang Lin, Wang Dandan. Frequency and bias dependent modeling of induced gate noise and cross-correlation noise in 40 nm metal-oxide-semiconductor field-effect transistors. Acta Physica Sinica, 2016, 65: 237102 doi: 10.7498/aps.65.237102
    [7]
    Enz C C, Cheng Y. MOS transistor modeling for RF IC design[J]. IEEE Journal of Solid-State Circuits, 2000, 35(2): 186-201. doi: 10.1109/4.823444
    [8]
    Cheng Yuhua. MOSFET modeling for RF IC design[J]. IEEE Trans Electron Devices, 2005, 52(7): 1286-1303. doi: 10.1109/TED.2005.850656
    [9]
    Poulain L, Waldhoff N, Gloria D, et al. Small signal and HF noise performance of 45 nm CMOS technology in mmW range[C]//IEEE Radio Frequency Integrated Circuits Symposium. 2011: 1-4.
    [10]
    Enz C. An MOS transistor model for RF IC design valid in all regions of operation[J]. IEEE Trans Microwave Theory & Techniques, 2002, 50(1): 342-359. https://ieeexplore.ieee.org/document/981286
    [11]
    Chan L H K, Yeo K S, Chew K W J, et al. High-frequency noise modeling of MOSFETs for ultra low-voltage RF applications[J]. IEEE Trans Microwave Theory & Techniques, 2015, 63(1): 141-154. https://www.sciencedirect.com/science/article/pii/S0038110198001920
    [12]
    Chalkiadaki M A, Enz C C. RF small-signal and noise modeling including parameter extraction of nanoscale MOSFET from weak to strong inversion[J]. IEEE Trans Microwave Theory & Techniques, 2015, 63(7): 1-12. https://ieeexplore.ieee.org/document/7109953/
    [13]
    Enz C C, Vittoz E A. Charge-based MOS transistor modeling: The EKV model for low-power and RF IC design[M]. New York: John Wiley, 2006.
    [14]
    Issaoun A, Xiong Y Z, Shi J, et al. On the deembedding issue of CMOS multigigahertz measurements[J]. IEEE Trans Microwave Theory & Techniques, 2007, 55(9): 1813-1823.
    [15]
    Frickey D A. Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances[J]. IEEE Trans Microwave Theory & Techniques, 1994, 42(2): 205-211. https://ieeexplore.ieee.org/document/275248/
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article views (1153) PDF downloads(128) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return