Yang Shi, Ren Shuqing, Lai Dingguo, et al. High power high voltage constant current capacitor charging power supply[J]. High Power Laser and Particle Beams, 2015, 27: 095006. doi: 10.11884/HPLPB201527.095006
Citation: Zeng Hongbo, Peng Xiaomei, Wang Jun. Analysis of RF noise mechanism in strong inversion region nanoscale MOSFET[J]. High Power Laser and Particle Beams, 2019, 31: 034101. doi: 10.11884/HPLPB201931.180375

Analysis of RF noise mechanism in strong inversion region nanoscale MOSFET

doi: 10.11884/HPLPB201931.180375
  • Received Date: 2018-12-20
  • Rev Recd Date: 2019-02-16
  • Publish Date: 2019-03-15
  • In order to effectively characterize the RF noise characteristics in the strong inversion region of nanoscale MOSFET, the noise modeling method is studied. Based on the analysis of extracted results of radio frequency small-signal equivalent circuit parameters of 45 nm MOSFET, a compact model for the MOSFET's drain current noise is proposed. This model fully describes three kinds of main physical sources that determine the noise mechanism of 45 nm MOSFET, including intrinsic drain current noise, thermal noise induced by the gate parasitic resistance, and coupling thermal noise induced by substrate parasitic effect. The accuracy of the proposed model is verified by noise measurements, and the intrinsic drain current noise of 45 nm MOSFET is proved to be the suppressed shot noise, and with the decrease of the gate voltage, the suppressed degree gradually decreases until it vanishes.
  • [1]
    Navid R, Jungemann C, Lee T H, et al. High frequency noise in nanoscale MOSFETs[J]. J Appl Phys, 2007, 101: 124501. doi: 10.1063/1.2740345
    [2]
    Wang S C, Su P, Chen K M, et al. Comprehensive noise characterization and modeling for 65nm MOSFETs[J]. IEEE Trans Microw Theory Tech, 2010, 58(4): 740-746. doi: 10.1109/TMTT.2010.2041582
    [3]
    Antonopoulos A, Bucher M, Papathanasiou K, et al. CMOS small-signal and thermal noise modeling at high frequencies[J]. IEEE Trans Electron Devices, 2013, 60(11): 3727-3733.
    [4]
    Chan L H K, Yeo K S, Chew K W J, et al. High-frequency noise modeling of MOSFETs for ultra low-voltage RF applications[J]. IEEE Trans Microw Theory Techn, 2015, 63(1): 141-153. doi: 10.1109/TMTT.2014.2371827
    [5]
    Chalkiadaki M A, Enz C C. RF small-signal and noise modeling including parameter extraction of nanoscale MOSFETs from weak to strong inversion[J]. IEEE Trans Microw Theory Techn, 2015, 63(7): 2173-2184. doi: 10.1109/TMTT.2015.2429636
    [6]
    Ong S N, Yeo K S, Chew W J. Impact of velocity saturation and hot carrier effects on channel thermal noise model of deep sub-micron MOSFETs[J]. Solid-State Electronics, 2012, 72: 32-37.
    [7]
    Smit G D J, Scholten A J, Pijper R M T, et al. RF-noise modeling in advanced CMOS technologies[J]. IEEE Trans Electron Devices, 2014, 61(2): 245-254. doi: 10.1109/TED.2013.2282960
    [8]
    Jeon J, Lee J, Kim J, et al. The first observation of shot noise characteristic in 10-nm scale MOSFETs[C]//2009 Symposium on VLSI Technology. 2009: 48-49.
    [9]
    Mahajan V M, Patalay P R, Jindal R P, et al. A physical understanding of RF noise in bulk nMOSFETs with channel lengths in the nanometer regime[J]. IEEE Trans Electron Devices, 2012, 59(1): 197-205. doi: 10.1109/TED.2011.2173691
    [10]
    Andersson S, Svensson C. Direct experimental verification of shot noise in short channel MOS transistors[J]. Electron Lett, 2005, 41(15): 869-870. doi: 10.1049/el:20051474
    [11]
    Spathis C, Birbas A, Georgakopoulou K. Semi-classical noise investigation for sub-45nm metal-oxide-semiconductor field effect[J]. AIP Advances, 2015, 5: 087114. doi: 10.1063/1.4928424
    [12]
    Tsididis Y. Operation and modeling of the MOS transistor[M]. Boston, M A: WCB/McGraw-Hill, 1999: 66.
    [13]
    李博, 王军. 45 nm MOSFET毫米波小信号等效电路模型参数提取技术[J]. 强激光与粒子束, 2019, 31: 024101. doi: 10.11884/HPLPB201931.180374

    Li Bo, Wang Jun. Parameter extraction technique of millimeter wave small-signal equivalent circuit model of 45 nm MOSFET. High Power Laser and Particle Beams, 2019, 31: 024101 doi: 10.11884/HPLPB201931.180374
    [14]
    Lee C I, Lin W C, Lin Y T. An improved cascade based noise de-embedding method for on-wafer noise parameter measurement[J]. IEEE Trans Electron Devices Lett, 2015, 36(4): 291-293. doi: 10.1109/LED.2015.2405915
    [15]
    Chan L H K, Yeo K S, Chew K W J, et al. MOSFET drain current noise modeling with effective gate overdrive and junction noise[J]. IEEE Trans Electron Device Lett, 2012, 33(8): 1117-1119. doi: 10.1109/LED.2012.2203781
  • Relative Articles

    [1]Zhou Tao, Hu Ning, Gai Longjie, Huang Wentao, Xu Yanlin, Liu Peiguo. Design of an S-band ultra-wideband energy selective surface[J]. High Power Laser and Particle Beams, 2024, 36(3): 033003. doi: 10.11884/HPLPB202436.230369
    [2]Zhang Wei, Xu Sha, Qin Fen, Lei Lurong, Wang Dong, Zhang Yong, Ju Bingquan, Cui Yue. Design of a compact S-band relativistic magnetron operating at low magnetic field[J]. High Power Laser and Particle Beams, 2023, 35(9): 093001. doi: 10.11884/HPLPB202335.230058
    [3]Gao Bin, Pei Shilun, Wang Hui, Zhao Shiqi, Chi Yunlong. Development of S-band hybrid bunching-accelerating structure prototype[J]. High Power Laser and Particle Beams, 2021, 33(2): 024002. doi: 10.11884/HPLPB202133.200162
    [4]Li Ye, Li Dongfeng, Wang Ziwei, Yan Song. Development of S-band ultra wideband high average power multi-beam klystron[J]. High Power Laser and Particle Beams, 2020, 32(10): 103005. doi: 10.11884/HPLPB202032.200202
    [5]Yuan Huan, Huang Hua, He Hu, Ge Yi, Meng Fanbao, Chen Changhua. Optimization and experimental study of phase characteristics of S-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2017, 29(11): 113001. doi: 10.11884/HPLPB201729.170133
    [6]Ye Hu, Cui Xinhong, Xiong Zhengfeng. Compact V-band overmoded mode-selective coupler with diamond apertures[J]. High Power Laser and Particle Beams, 2016, 28(09): 093006. doi: 10.11884/HPLPB201628.150842
    [7]Lei Lurong, Yuan Huan, Liu Zhenbang, Huang Hua, He Hu, Huang Jijin. Design of broadband relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2016, 28(02): 023003. doi: 10.11884/HPLPB201628.023003
    [8]Zhang Xin’ge, Li Shaofu, Li Bo, Deng Yuan, Li Ya’nan, Wang Lanlan. Circular waveguide TM01-TE11 mode converter[J]. High Power Laser and Particle Beams, 2014, 26(08): 083003. doi: 10.11884/HPLPB201426.083003
    [9]Chen Zhaofu, Chang Anbi, Huang Hua, Liu Zhenbang, He Hu. Numerical simulations of S-band multiple-beam relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2012, 24(03): 743-746. doi: 10.3788/HPLPB20122403.0743
    [10]shen baoli, zhang zhaochuan, huang yunping. Development of output section for S-band broadband high-average-power klystron[J]. High Power Laser and Particle Beams, 2011, 23(09): 0- .
    [11]bai xianchen, yang jianhua, zhang jiande, zhang zehai. Influence of electron beam collector on output cavity efficiency of wide-gap klystron amplifier[J]. High Power Laser and Particle Beams, 2011, 23(06): 0- .
    [12]bai xianchen, zhang jiande, yang jianhua. 3-D simulation of S-band wide-gap klystron amplifier output cavity[J]. High Power Laser and Particle Beams, 2010, 22(12): 0- .
    [13]cao nai-sheng, luo yong, wang jian-xun. Design of aperture-coupling directional coupler[J]. High Power Laser and Particle Beams, 2008, 20(04): 0- .
    [14]gan yan-qing, huang hua, lei lu-rong, zhang yong-hui, jin xiao, ju bing-quan, xiang fei, xu zhou. Experimental investigation on an S-band relativistic klystron oscillator[J]. High Power Laser and Particle Beams, 2008, 20(05): 0- .
    [15]lei lu-rong, fan zhi-kai, huang hua, ding en-yan, zhang xing-kai, chen zhi-gang, feng di-chao, yu ai-ming, liu tian-wen, yang zhou-bing, an hai-shi. Design and investigation of S-band klystron double-gap output cavity[J]. High Power Laser and Particle Beams, 2008, 20(01): 0- .
    [16]lei lu-rong, fan zhi-kai, huang hua, he hu. Particle simulation of relativistic klystron amplifier double-gap output cavity[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- .
    [17]huang hua, fan zhi-kai, meng fan-ba, tan jie, luo guang-yao, cao shao-yun, lei lu-rong, wu yong, li zheng-hong, zhou hai-jing, zhang bei-zhen, li chun-xia. Investigation on S-band long pulse relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2006, 18(06): 0- .
    [18]ge cheng-liang, liang zheng, yang zi-qiang. Particle simulation on S-band relativistic two-stream amplifier[J]. High Power Laser and Particle Beams, 2001, 13(06): 0- .
  • Cited by

    Periodical cited type(7)

    1. 甘延青,罗光耀,李飞,张北镇,李春霞,王淦平,金晓,宋法伦. 大功率重复频率高电压脉冲充电电源研制. 强激光与粒子束. 2025(03): 22-29 . 本站查看
    2. 江进波,徐林,罗正,杨文,唐铭,姚延东,陈锐. 基于LC串联谐振的高压恒流充电电源设计. 强激光与粒子束. 2024(05): 46-53 . 本站查看
    3. 冯传均,伍友成,何泱,戴文峰,付佳斌,刘宏伟. 正负双极性重复频率充电电源研制. 强激光与粒子束. 2023(03): 121-127 . 本站查看
    4. 冯传均,何泱,戴文峰,伍友成,付佳斌,王敏华. 串联谐振高压电容充电电源设计及分析. 强激光与粒子束. 2019(05): 55-60 . 本站查看
    5. 蔡政平,李伟松. 太赫兹器件测试用高重复频率高压脉冲电源. 强激光与粒子束. 2018(02): 62-67 . 本站查看
    6. 张彬,杨欣欣,周赛,蔡晨,赵辉,韩吉庆,潘忠泉. 波长校准用低压石英汞灯驱动电源的研制. 化学分析计量. 2017(02): 106-109 .
    7. 缪亚运,谷鸣,陈志豪,童金. 质子治疗装置脉冲电源研制. 核技术. 2016(04): 32-36 .

    Other cited types(9)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.0 %FULLTEXT: 22.0 %META: 75.7 %META: 75.7 %PDF: 2.3 %PDF: 2.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.2 %其他: 3.2 %China: 0.6 %China: 0.6 %Colonia Madero (Madero): 0.3 %Colonia Madero (Madero): 0.3 %India: 0.1 %India: 0.1 %United States: 0.7 %United States: 0.7 %[]: 0.1 %[]: 0.1 %上海: 3.2 %上海: 3.2 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %北京: 18.6 %北京: 18.6 %南京: 0.2 %南京: 0.2 %台州: 2.2 %台州: 2.2 %合肥: 0.2 %合肥: 0.2 %咸阳: 0.1 %咸阳: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %宣城: 0.1 %宣城: 0.1 %广州: 0.2 %广州: 0.2 %弗吉尼亚州: 0.3 %弗吉尼亚州: 0.3 %张家口: 0.2 %张家口: 0.2 %悉尼: 0.3 %悉尼: 0.3 %成都: 2.6 %成都: 2.6 %成都市双流区: 0.1 %成都市双流区: 0.1 %扬州: 0.1 %扬州: 0.1 %昆明: 0.1 %昆明: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 2.4 %杭州: 2.4 %武汉: 0.2 %武汉: 0.2 %海口: 0.1 %海口: 0.1 %淄博: 0.2 %淄博: 0.2 %深圳: 0.2 %深圳: 0.2 %温州: 0.1 %温州: 0.1 %湖州: 1.1 %湖州: 1.1 %漯河: 0.4 %漯河: 0.4 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 18.1 %芒廷维尤: 18.1 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.2 %苏州: 0.2 %莆田: 0.1 %莆田: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %襄阳: 0.1 %襄阳: 0.1 %西宁: 40.7 %西宁: 40.7 %西安: 0.2 %西安: 0.2 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.4 %运城: 0.4 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.2 %郑州: 0.2 %重庆: 0.1 %重庆: 0.1 %长春: 0.1 %长春: 0.1 %长治: 0.1 %长治: 0.1 %阳泉: 0.2 %阳泉: 0.2 %龙岩: 0.1 %龙岩: 0.1 %其他ChinaColonia Madero (Madero)IndiaUnited States[]上海中山临汾丹东北京南京台州合肥咸阳嘉兴宣城广州弗吉尼亚州张家口悉尼成都成都市双流区扬州昆明普洱杭州武汉海口淄博深圳温州湖州漯河石家庄秦皇岛芒廷维尤芝加哥苏州莆田衡阳衢州襄阳西宁西安贵阳运城邯郸郑州重庆长春长治阳泉龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views (1392) PDF downloads(97) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return