Volume 31 Issue 4
Apr.  2019
Turn off MathJax
Article Contents
Liu Xingliang, Qiu Qi, Wang Ruoyu, et al. Equivalent parameters prediction of dielectric barrier discharge piecewise model with parallel ceramic rods[J]. High Power Laser and Particle Beams, 2019, 31: 040007. doi: 10.11884/HPLPB201931.180385
Citation: Liu Xingliang, Qiu Qi, Wang Ruoyu, et al. Equivalent parameters prediction of dielectric barrier discharge piecewise model with parallel ceramic rods[J]. High Power Laser and Particle Beams, 2019, 31: 040007. doi: 10.11884/HPLPB201931.180385

Equivalent parameters prediction of dielectric barrier discharge piecewise model with parallel ceramic rods

doi: 10.11884/HPLPB201931.180385
  • Received Date: 2018-12-29
  • Rev Recd Date: 2019-02-22
  • Publish Date: 2019-04-15
  • In order to achieve effective prediction of the equivalent parameters of dielectric barrier discharge piecewise model, discharge region is introduced as an intermediate variable in the proposed method. In this study, taking parallel ceramic rods as the reactor, the corresponding relationships between the equivalent capacitances of the reactor and the discharge region are obtained by Maxwell finite element simulation under constant voltage electrostatic field. With the help of electric field distribution, the estimation theories of how the critical parameters change over the gradual expansion process of the discharge region are explained, including the air gap first breakdown voltage, the peak value of the applied voltage and the air gap discharge maintaining voltage. Afterwards, the discharge power under various operating conditions can be calculated by Lissajous's figure method. Thus the quantitative relationship between the discharge region and each equivalent parameter is established, and the prediction is realized. An experiment for verification was performed with air gap distances of 1 mm, 3 mm, and 4 mm. It is shown that the predicted and the experimental curves of discharge maintaining voltage have some difference in the local variation trend, while the discharge power and the applied voltage peak prediction results are in good agreement with the measured ones.
  • loading
  • [1]
    宋颖. 大气压非平衡等离子体在杀菌中的应用研究[D]. 大连: 大连理工大学, 2014.

    Song Ying. Inactivation applications of atmospheric pressure nonequilibrium plasmas. Dalian: Dalian University of Technology, 2014
    [2]
    Kogelschatz U. Dielectric-barrier discharges: Their history, discharge physics, and industrial applications[J]. Plasma Chemistry and Plasma Processing, 2003, 23(1): 1-46. doi: 10.1023/A:1022470901385
    [3]
    胡小吐. AC/DC流光放电等离子体烟气脱硫实验研究[D]. 北京: 北京交通大学, 2007.

    Hu Xiaotu. Experimental research of AC/DC streamer plasmas in flue gas desulfurization. Beijing: Beijing Jiaotong University, 2007
    [4]
    Lieberman M A, Lichtenberg A J. Principles of plasma discharges and materials processing[M]. Hoboken: John Wiley & Sons, 2005.
    [5]
    郝世强. 介质阻挡放电的能量压缩机理、实现及优化[D]. 杭州: 浙江大学, 2016.

    Hao Shiqiang. Mechanism, implementation and optimization of dielectric barrier discharge energy compression. Hangzhou: Zhejiang University, 2016
    [6]
    Kinnares V, Hothongkham P. Circuit analysis and modeling of a phase-shifted pulsewidth modulation full-bridge-inverter-fed ozone generator with constant applied electrode voltage[J]. IEEE Transactions on Power Electronics, 2010, 25(7): 1739-1752. doi: 10.1109/TPEL.2010.2042075
    [7]
    Eid A, Takashima K, Mizuno A. Experimental and simulation investigations of DBD plasma reactor at normal environmental conditions[J]. IEEE Transactions on Industry Applications, 2014, 50(6): 4221-4227. doi: 10.1109/TIA.2014.2315496
    [8]
    Guo Tangtang, Liu Xingliang, Hao Shiqiang, et al. Prediction of equivalent electrical parameters of dielectric barrier discharge load using a neural network[J]. Plasma Science and Technology, 2015, 17(3): 196-201. doi: 10.1088/1009-0630/17/3/05
    [9]
    Alonso J M, Valdés M, Calleja A J, et al. High frequency testing and modeling of silent discharge ozone generators[J]. Ozone Science & Engineering, 2003, 25(5): 363-376.
    [10]
    王静, 蔡忆昔, 王军, 等. 介质阻挡放电等效电容的测量与分析[J]. 高电压技术, 2008, 34(2): 264-266, 308. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200802013.htm

    Wang Jing, Cai Yixi, Wang Jun, et al. Measurement and analysis of equivalent capacitance in dielectric barrier discharge. High Voltage Engineering, 2008, 34(2): 264-266, 308 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200802013.htm
    [11]
    王辉, 方志, 邱毓昌, 等. 介质阻挡放电等效电容变化规律的研究[J]. 绝缘材料, 2005, 38(1): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JYCT200501012.htm

    Wang Hui, Fang Zhi, Qiu Yuchang, et al. On the changing of equivalent capacitance in dielectric barrier discharge. Insulating Materials, 2005, 38(1): 37-40 https://www.cnki.com.cn/Article/CJFDTOTAL-JYCT200501012.htm
    [12]
    Xiao Dengming. Gas discharge and gas insulation[M]. Heidelberg: Springer-Verlag, 2016.
    [13]
    张红. 高电压技术[M]. 北京: 中国电力出版社, 2009.

    Zhang Hong. High voltage technique. Beijing: China Electric Power Press, 2009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (780) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return