Citation: | Zhu Lei, Liu Qiang, Zhao Xiang, et al. Prediction of coupling section of circular aperture based on BP neural network[J]. High Power Laser and Particle Beams, 2019, 31: 033201. doi: 10.11884/HPLPB201931.190011 |
[1] |
Petersson L E R, Smith G S. Transmission of an evanescent wave through a subwavelength aperture in a PEC screen[C]//IEEE Antennas & Propagation Society International Symposium. 2004: 4551-4554.
|
[2] |
Robinson M P, Clegg J, Marvin A C. Radio frequency electromagnetic fields in large conducting enclosures: effects of apertures and human bodies on propagation and field-statistics[J]. IEEE Trans Electromagnetic Compatibility, 2006, 48(2): 304-310. doi: 10.1109/TEMC.2006.873856
|
[3] |
Cho Y K, Son H W, Choi J Y. Transmission resonance through small apertures[C]//IEEE International Workshop on Antenna Technology. 2012: 1-3.
|
[4] |
Bertrand A, Ramos M. Apertures coupling for electrical field calculation in Ariane 5 launcher cavities: Experimental characterization of apertures' effective coupling cross section in oversized complex cavities[C]//International Symposium on Electromagnetic Compatibility. 2014: 677-680.
|
[5] |
Gunnarsson R, Mats B. Transmission cross section for apertures and arrays calculated using time-domain simulations[C]//International Symposium on Electromagnetic Compatibility. 2014: 169-174.
|
[6] |
Cho Y K, Son H W, Lee C H. Transmission resonance through small apertures in conducting screen[C]//IEEE International Workshop on Antenna Technology. 2015: 77-79.
|
[7] |
Koch G, Kolbig K. The transmission coefficient of elliptical and rectangular apertures for electromagnetic waves[J]. IEEE Trans Antennas &Propagation, 1968, 16(1): 78-83.
|
[8] |
Butler C, Rahmat-Samii Y, Mittra R. Electromagnetic penetration through apertures in conducting surfaces[J]. IEEE Trans Antennas & Propagation, 1978, 26(1): 82-93.
|
[9] |
Hill D A, Ma M T, Ondrejka A R, et al. Aperture excitation of electrically large, lossy cavities[J]. IEEE Trans Electromagnetic Compatibility, 1994, 36(3): 169-178. doi: 10.1109/15.305461
|
[10] |
Olyslager F, Laermans E, De Zutter D, et al. Numerical and experimental study of the shielding effectiveness of a metallic enclosure[J]. IEEE Trans Electromagnetic Compatibility, 1999, 41(3): 202-213. doi: 10.1109/15.784155
|
[11] |
Khan Z A, Bunting C F, Deshpande M D. Shielding effectiveness of metallic enclosures at oblique and arbitrary polarizations[J]. IEEE Trans Electromagnetic Compatibility, 2005, 47(1): 112-122. doi: 10.1109/TEMC.2004.842117
|
[1] | Lü Donghui, Cheng Jie, Li Rui, Zhang Nan, Zhang Ligang. A nano-second pulse waveform reconstruction method based on neural network[J]. High Power Laser and Particle Beams, 2025, 37(1): 013002. doi: 10.11884/HPLPB202537.240342 |
[2] | He Zhihan, Hong Juting, Yan Liping, Zhao Xiang. Modeling and application of electromagnetic coupling cross section of building walls[J]. High Power Laser and Particle Beams, 2023, 35(5): 053006. doi: 10.11884/HPLPB202335.230006 |
[3] | Hu Minglang, Zhou Shihua, Yan Liping, Zhao Xiang. Development and validation of electromagnetic coupling solver for electrically large-sized cavity structure based on power balance method[J]. High Power Laser and Particle Beams, 2022, 34(5): 053002. doi: 10.11884/HPLPB202234.220026 |
[4] | He Zhibin, Yan Liping, Zhao Xiang. Prediction of coupling cross section of hexagonal aperture array based on BP neural network[J]. High Power Laser and Particle Beams, 2022, 34(5): 053001. doi: 10.11884/HPLPB202234.210566 |
[5] | Zeng Meiling, Cai Jinliang, Yi Zao, Qin Feng, Kuang Xiangjun. Effect of aperture on shielding performance of metal cavity under excitation of high-intensity electromagnetic pulse[J]. High Power Laser and Particle Beams, 2021, 33(4): 043004. doi: 10.11884/HPLPB202133.200336 |
[6] | Li Xiaoyan, Yan Liping, Zhao Xiang. Coupling of electromagnetic field to transmission line above the composite plate[J]. High Power Laser and Particle Beams, 2019, 31(5): 053201. doi: 10.11884/HPLPB201931.190030 |
[7] | Liao Yong, Meng Fanbao, Zhang Xianfu, Xu Gang, Chen Shitao, Xie Ping, Ma Hongge. Resonant normalized conductance of slotted sectorial waveguide antenna[J]. High Power Laser and Particle Beams, 2016, 28(08): 083007. doi: 10.11884/HPLPB201628.150832 |
[8] | Liu Jiao, Yan Liping, Li Bin, Zhao Xiang. Artificial neural network modeling of component nonlinear behavior and application in conducted interference analysis[J]. High Power Laser and Particle Beams, 2015, 27(10): 103212. doi: 10.11884/HPLPB201527.103212 |
[9] | Zhang Yapu, Da Xinyu, Xie Tiecheng. Electromagnetic topology model for shielding effectiveness estimation of metallic enclosure with apertures[J]. High Power Laser and Particle Beams, 2014, 26(02): 023204. doi: 10.3788/HPLPB201426.023204 |
[10] | shi jiyuan, luo jianshu, ni guyan, li ying, chen xiaoping. Coupling onto wires enclosed in cavity with aperture[J]. High Power Laser and Particle Beams, 2011, 23(03): 0- . |
[11] | li peng, song lijun, han chao, zheng yi, cao baofeng, li xiaoqiang, zhang xueqin, liang rui. Recognition of NEMP and LEMP signals based on auto-regression model and artificial neutral network[J]. High Power Laser and Particle Beams, 2010, 22(12): 0- . |
[12] | xiao jinshi, liu wenhua, zhang shiying, zhang jinhua. Numerical simulation on coupling effects of ultra wide band electromagnetic pulse into slots in a cavity[J]. High Power Laser and Particle Beams, 2010, 22(12): 0- . |
[13] | song hang, hou deting, zhou dongfang, hu tao, niu zhongxia, bai xiang. Analysis on high power microwave aperture coupling of double layer shielding enclosure[J]. High Power Laser and Particle Beams, 2009, 21(04): 0- . |
[14] | liu qiang, qian baoliang, zhu zhanping. Numerical study on coupling of microwave pulses into different shaped cavities through slots[J]. High Power Laser and Particle Beams, 2009, 21(12): 0- . |
[15] | liu qiang, zhu zhan-ping, qian bao-liang. Influence of inner slot position on the coupling of microwave into nested cavities[J]. High Power Laser and Particle Beams, 2007, 19(06): 0- . |
[16] | peng zhen-ming, jiang biao, xiao jun. Aerial extended target detection based on unit-linking pulse coupled neural networks[J]. High Power Laser and Particle Beams, 2007, 19(12): 0- . |
[17] | zhou jin shan, liu guo zhi, peng peng, wang jian guo. Experimental studies on microwave coupling coefficient for differentshaped apertures[J]. High Power Laser and Particle Beams, 2004, 16(01): 0- . |
[18] | Numerical study on coupling of electrostatic discharge electromagnetic fields into a metallic cavity through an aperture BI Zeng-jun,LIU Shang-he[J]. High Power Laser and Particle Beams, 2003, 15(11): 0- . |
[19] | fu ji-wei, hou chao-hen, dou li-hua. Numerical analysis on hole coupling effects of an oblique incidence of electromagnetic pulse[J]. High Power Laser and Particle Beams, 2003, 15(03): 0- . |
[20] | zhou jin shan, liu guo zhi, wang jian guo. Experimental studies on coupling characteristics of rectangular slot[J]. High Power Laser and Particle Beams, 2003, 15(12): 0- . |
1. | 张学海,戴聪明,张鑫,魏合理,朱希娟,马静. 相对湿度和粒子形态对海盐气溶胶粒子散射特性的影响. 红外与激光工程. 2019(08): 253-260 . ![]() | |
2. | 李树旺,邵士勇,梅海平,饶瑞中. 气溶胶吸收的光热干涉相位载波算法. 强激光与粒子束. 2016(04): 12-16 . ![]() |