Citation: | Li Xiaoyan, Yan Liping, Zhao Xiang. Coupling of electromagnetic field to transmission line above the composite plate[J]. High Power Laser and Particle Beams, 2019, 31: 053201. doi: 10.11884/HPLPB201931.190030 |
[1] |
Chu H C, Jeng S K, Chen C H. Reflection and transmission characteristics of lossy periodic composite structures[J]. IEEE Trans Antennas Propagation, 1996, 44(3): 580-587.
|
[2] |
Evans R W. Design guidelines for shielding effectiveness, current carrying capability, and the enhancement of conductivity of composite materials[R]. NASA Contractor Report, No. 4784, 1997.
|
[3] |
Rosa I M D, Sarasini F, Sarto M S, et al. EMC impact of advanced carbon fiber/carbon nanotube reinforced composites for next-generation aerospace applications[J]. IEEE Trans Electromagnetic Compatibility, 2008, 50(3): 556-563. doi: 10.1109/TEMC.2008.926818
|
[4] |
Leininger M, Thurecht F, Ruddle A. Advanced grounding methods in the presence of carbon fiber reinforced plastic structures[C]//2012 ESA Workshop on Aerospace EMC. 2012: 1-6.
|
[5] |
Cabello M R, Fernandez S, Pous M, et al. SIVA UAV: A case study for the EMC analysis of composite air vehicles[J]. IEEE Trans Electromagnetic Compatibility, 2017, 59(4): 1103-1113. doi: 10.1109/TEMC.2017.2648507
|
[6] |
Dawson J F, Austin A N, Flintoft I D, et al. Shielding effectiveness and sheet conductance of nonwoven carbon-fiber sheets[J]. IEEE Trans Electromagnetic Compatibility, 2017, 59(1): 84-92. doi: 10.1109/TEMC.2016.2601658
|
[7] |
Holloway C L, Sarto M S, Johansson M. Analyzing carbon-fiber composite materials with equivalent-layer models[J]. IEEE Trans Electromagnetic Compatibility, 2005, 47(4): 833-844. doi: 10.1109/TEMC.2005.854101
|
[8] |
Qi Jiaran, Wang Nannan, Xiao Shanshan. Removing Fabry-Pérot artifacts for electromagnetic homogenization of lossless and lossy dielectric composite based on scattering parameters[J]. IEEE Trans Dielectrics and Electrical Insulation, 2017, 24(3): 1852-1859. doi: 10.1109/TDEI.2017.005786
|
[9] |
Cordill B D, Seguin S A, Ewing M S. Shielding effectiveness of carbon-fiber composite aircraft using large cavity theory[J]. IEEE Trans Instrumentation and Measurement, 2013, 62(4): 743-751. doi: 10.1109/TIM.2013.2240935
|
[10] |
Rath V, Panwar V. Electromagnetic interference shielding analysis of conducting composites in near- and far-field region[J]. IEEE Trans Electromagnetic Compatibility, 2018, 60(6): 1795-1801. doi: 10.1109/TEMC.2017.2780883
|
[11] |
Vas J V, Thomas M J. Electromagnetic shielding effectiveness of layered polymer nanocomposites[J]. IEEE Trans Electromagnetic Compatibility, 2018, 60(2): 376-384. doi: 10.1109/TEMC.2017.2719764
|
[12] |
Jazzar A, Clavel E, Meunier G. Study of lightning effects on aircraft with predominately composite structures[J]. IEEE Trans Electromagnetic Compatibility, 2014, 56(3): 675-682. doi: 10.1109/TEMC.2013.2297444
|
[13] |
Smorgonskiy A, Rachidi F, Rubinstein M, et al. Are standardized lightning current waveforms suitable for aircraft and wind turbine blades made of composite materials?[J]. IEEE Trans Electromagnetic Compatibility, 2017, 59(4): 1320-1328. doi: 10.1109/TEMC.2017.2682324
|
[14] |
Huang Liyang, Gao Cheng, Guo Fei, et al. Lightning indirect effects on helicopter: numerical simulation and experiment validation[J]. IEEE Trans Electromagnetic Compatibility, 2017, 59(4): 1171-1179. doi: 10.1109/TEMC.2017.2651900
|
[15] |
廖意, 蔡昆, 张元, 等. 高强度纤维增强材料介电特性计算方法[J]. 物理学报, 2016, 65(2): 1-8.
Liao Yi, Cai Kun, Zhang Yuan, et al. An approach to characterize dielectric properties of fiber-reinforced composites with high volume fraction. Acta Physica Sinica, 2016, 65(2): 1-8
|
[16] |
王天乐, 闫丽萍, 赵翔, 等. 包含非线性组件的系统级电磁效应分析方法[J]. 强激光与粒子束, 2014, 26: 073204. doi: 10.11884/HPLPB201426.073204
Wang Tianle, Yan Liping, Zhao Xiang, et al. System-level analysis method of electromagnetic effects on an electronic system containing nonlinear components. High Power Laser and Particle Beams, 2014, 26: 073204 doi: 10.11884/HPLPB201426.073204
|
[17] |
Leone M, Mantzke A. A Foster-type field-to-transmission line coupling model for broadband simulation[J]. IEEE Trans Electromagnetic Compatibility, 2014, 56(6): 1-8. doi: 10.1109/TEMC.2014.2373895
|
[18] |
Otsuyama T, Naganawa J, Honda J, et al. Measuring signal environment in the aircraft surveillance frequency by flight experiments[C]//2018 International Symposium on Electromagnetic Compatibility. 2018: 44-47.
|
[19] |
Tesche F M, Ianoz M V, Karlsson T. EMC analysis methods and computational models[M]. New York: Wiley, 1997.
|