Citation: | Xiao Longfei, Xu Xiangang. Recent development of wide bandgap semiconductor SiC substrates and device[J]. High Power Laser and Particle Beams, 2019, 31: 040003. doi: 10.11884/HPLPB201931.190043 |
[1] |
Powell A R, Rowland L B. SiC materials—progress, status, and potential roadblocks[J]. Proceedings of the IEEE, 2002, 90(6): 942-955. doi: 10.1109/JPROC.2002.1021560
|
[2] |
Neudeck P G, Okojie R S, Chen L Y. High temperature electronics—a role for wide bandgap semiconductors[J]. Proc of the IEEE, 2006, 90(6): 1065-1076.
|
[3] |
Hudgins J. Wide and narrow bandgap semiconductors for power electronics: A new valuation[J]. Journal of Electronic Material, 2003, 32(6): 471-477. doi: 10.1007/s11664-003-0128-9
|
[4] |
Morkoc H, Strite S, Gao G B, et al. Large-band-gap SiC, Ⅲ-V nitride, and Ⅱ-VI ZnSe-based semiconductor device technologies[J]. Journal of Applied Physics, 1994, 76(3): 1363-1398. doi: 10.1063/1.358463
|
[5] |
郝跃, 彭军, 杨银堂. 碳化硅宽带隙半导体技术[M]. 北京: 科学出版社, 2000: 116-119.
Hao Yue, Peng Jun, Yang Yintang. The technology of silicon carbide broadband gap semiconductor. Beijing: Science Press, 2000: 116-119
|
[6] |
Glass R C, Henshall D, Tsvetkov V F, et al. SiC-seeded crystal growth[J]. MRS Bulletin, 1997, 22(3): 30-35. doi: 10.1557/S0883769400032735
|
[7] |
Yashiro N, Kusunoki K, Kamei K, et al. Growth of SiC single crystal from Si-C-(Co, Fe) ternary solution[C]//Materials science forum. Trans Tech Publications, 2006, 527: 115-118.
|
[8] |
Kimoto T, Cooper J A. Fundamentals of silicon carbide technology: growth, characterization, devices and applications[M]. John Wiley & Sons, 2014.
|
[9] |
Danno K, Saitoh H, Seki A, et al. High-speed growth of high-quality 4H-SiC bulk by solution growth using Si-Cr based melt[J]. Materials Science Forum, 2010, 645/648: 13-16. doi: 10.4028/www.scientific.net/MSF.645-648.13
|
[10] |
彭燕, 陈秀芳, 彭娟, 等. 高质量半绝缘ϕ150 mm 4H-SiC单晶生长研究[J]. 人工晶体学报, 2016, 45(5): 1145-1152. doi: 10.3969/j.issn.1000-985X.2016.05.001
Peng Yan, Chen Xiufang, Peng Juan, et al. Study on the growth of high quality semi-insulating ϕ150 mm 4H-SiC single crystal. Journal of Synthetic Crystals, 2016, 45(5): 1145-1152 doi: 10.3969/j.issn.1000-985X.2016.05.001
|
[11] |
Bluhm H. Pulsed power systems[M]. Berlin: Springer-Verlag, 2006.
|
[12] |
Cho P S, Goldhar J, Lee C H, et al. Photoconductive and photovoltaic response of high-dark-resistivity 6H-SiC devices[J]. Journal of Applied Physics, 1995, 77(4): 1591-1599. doi: 10.1063/1.358912
|
[13] |
Sheng S, Spencer M G, Tang X, et al. Polycrystalline cubic silicon carbide photoconductive switch[J]. IEEE Electron Device Lett, 1997, 18(8): 372-374. doi: 10.1109/55.605443
|
[14] |
Dogˇ an S, Teke A, Huang D, et al. 4H-SiC photoconductive switching devices for use in high-power applications[J]. Applied Physics Letters, 2003, 82(18): 3107-3109. doi: 10.1063/1.1571667
|
[15] |
Zhu K, Dogˇ an S, Moon Y T, et al. Effect of n+-GaN subcontact layer on 4H-SiC high-power photoconductive switch[J]. Applied Physics Letters, 2005, 86: 261108. doi: 10.1063/1.1951056
|
[16] |
Mauch D, Sullivan W, Bullick A, et al. High power lateral silicon carbide photoconductive semiconductor switches and investigation of degradation mechanisms[J]. IEEE Trans Plasma Science, 2015, 43(6): 2021-2031. doi: 10.1109/TPS.2015.2424154
|
[17] |
Tiskumara R, Joshi R P, Mauch D, et al. Analysis of high field effects on the steady-state current-voltage response of semi-insulating 4H-SiC for photoconductive switch applications[J]. Journal of Applied Physics, 2015, 118: 095701. doi: 10.1063/1.4929809
|
[18] |
Chowdhury A R, Mauch D, Joshi R P, et al. Contact extensions over a high-dielectric layer for surface field mitigation in high power 4H-SiC photoconductive switches[J]. IEEE Trans Electron Devices, 2016, 63(8): 3171-3176.
|
[19] |
刘金锋, 袁建强, 刘宏伟, 等. 影响碳化硅光导开关最小导通电阻的因素[J]. 强激光与粒子束, 2012, 24(3): 607-611. doi: 10.3788/HPLPB20122403.0607
Liu Jinfeng, Yuan Jianqiang, Liu Hongwei, et al. Factors affecting minimum on-state resistance of SiC photoconductive semiconductor switch. High Power Laser and Particle Beams, 2012, 24(3): 607-611 doi: 10.3788/HPLPB20122403.0607
|
[20] |
周天宇, 刘学超, 代冲冲, 等. V掺杂6H-SiC光导开关制备与性能研究[J]. 强激光与粒子束, 2014, 26: 045043. doi: 10.11884/HPLPB201426.045043
Zhou Tianyu, Liu Xuechao, Dai Chongchong, et al. Fabrication and properties of V-doped semi-insulating 6H-SiC photoconductive semiconductor switch. High Power Laser and Particle Beams, 2014, 26: 045043 doi: 10.11884/HPLPB201426.045043
|
[21] |
Cao Penghui, Huang Wei, Guo Hui, et al. Performance of a vertical 4H-SiC photoconductive switch with AZO transparent conductive window and silver mirror reflector[J]. IEEE Trans Electron Devices, 2018, 65(5): 2047-2051. doi: 10.1109/TED.2018.2815634
|
[22] |
Xiao Longfei, Yang Xianglong, Duan Peng, et al. Effect of electron avalanche breakdown on a high-purity semi-insulating 4H-SiC photoconductive semiconductor switch under intrinsic absorption[J]. Applied Optics, 2018, 57(11): 2804-2808. doi: 10.1364/AO.57.002804
|
[23] |
Luan Chongbiao, Li Boting, Zhao Juan, et al. A new phenomenon in semi-insulating 4H-SiC photoconductive semiconductor switches[J]. IEEE Trans Electron Devices, 2018, 65(1): 172-175. doi: 10.1109/TED.2017.2777600
|