Chang Hongxiang, Su Rongtao, Long Jinhu, et al. Research progress of active phase-locking technique of an all-fiber coherent laser array[J]. High Power Laser and Particle Beams, 2023, 35: 041004. doi: 10.11884/HPLPB202335.220259
Citation: Xiao Longfei, Xu Xiangang. Recent development of wide bandgap semiconductor SiC substrates and device[J]. High Power Laser and Particle Beams, 2019, 31: 040003. doi: 10.11884/HPLPB201931.190043

Recent development of wide bandgap semiconductor SiC substrates and device

doi: 10.11884/HPLPB201931.190043
  • Received Date: 2019-02-09
  • Rev Recd Date: 2019-03-01
  • Publish Date: 2019-04-15
  • As a key representative material for the third-generation wide bandgap semiconductors, silicon carbide (SiC) is a promising wide band gap semiconductor material and can be used for the fabrication of high-power and high-frequency electronics, due to its superior physical properties, such as high thermal conductivity, wide band gap and high critical breakdown field. In recent years, bulk growth of SiC single crystals and the fabrication of devices have made significant progress. The paper introduces the growth techniques for SiC bulk and presents the relationship between the on-state resistance and voltage or laser energy. It also analyses the failure of devices.
  • [1]
    Powell A R, Rowland L B. SiC materials—progress, status, and potential roadblocks[J]. Proceedings of the IEEE, 2002, 90(6): 942-955. doi: 10.1109/JPROC.2002.1021560
    [2]
    Neudeck P G, Okojie R S, Chen L Y. High temperature electronics—a role for wide bandgap semiconductors[J]. Proc of the IEEE, 2006, 90(6): 1065-1076.
    [3]
    Hudgins J. Wide and narrow bandgap semiconductors for power electronics: A new valuation[J]. Journal of Electronic Material, 2003, 32(6): 471-477. doi: 10.1007/s11664-003-0128-9
    [4]
    Morkoc H, Strite S, Gao G B, et al. Large-band-gap SiC, Ⅲ-V nitride, and Ⅱ-VI ZnSe-based semiconductor device technologies[J]. Journal of Applied Physics, 1994, 76(3): 1363-1398. doi: 10.1063/1.358463
    [5]
    郝跃, 彭军, 杨银堂. 碳化硅宽带隙半导体技术[M]. 北京: 科学出版社, 2000: 116-119.

    Hao Yue, Peng Jun, Yang Yintang. The technology of silicon carbide broadband gap semiconductor. Beijing: Science Press, 2000: 116-119
    [6]
    Glass R C, Henshall D, Tsvetkov V F, et al. SiC-seeded crystal growth[J]. MRS Bulletin, 1997, 22(3): 30-35. doi: 10.1557/S0883769400032735
    [7]
    Yashiro N, Kusunoki K, Kamei K, et al. Growth of SiC single crystal from Si-C-(Co, Fe) ternary solution[C]//Materials science forum. Trans Tech Publications, 2006, 527: 115-118.
    [8]
    Kimoto T, Cooper J A. Fundamentals of silicon carbide technology: growth, characterization, devices and applications[M]. John Wiley & Sons, 2014.
    [9]
    Danno K, Saitoh H, Seki A, et al. High-speed growth of high-quality 4H-SiC bulk by solution growth using Si-Cr based melt[J]. Materials Science Forum, 2010, 645/648: 13-16. doi: 10.4028/www.scientific.net/MSF.645-648.13
    [10]
    彭燕, 陈秀芳, 彭娟, 等. 高质量半绝缘ϕ150 mm 4H-SiC单晶生长研究[J]. 人工晶体学报, 2016, 45(5): 1145-1152. doi: 10.3969/j.issn.1000-985X.2016.05.001

    Peng Yan, Chen Xiufang, Peng Juan, et al. Study on the growth of high quality semi-insulating ϕ150 mm 4H-SiC single crystal. Journal of Synthetic Crystals, 2016, 45(5): 1145-1152 doi: 10.3969/j.issn.1000-985X.2016.05.001
    [11]
    Bluhm H. Pulsed power systems[M]. Berlin: Springer-Verlag, 2006.
    [12]
    Cho P S, Goldhar J, Lee C H, et al. Photoconductive and photovoltaic response of high-dark-resistivity 6H-SiC devices[J]. Journal of Applied Physics, 1995, 77(4): 1591-1599. doi: 10.1063/1.358912
    [13]
    Sheng S, Spencer M G, Tang X, et al. Polycrystalline cubic silicon carbide photoconductive switch[J]. IEEE Electron Device Lett, 1997, 18(8): 372-374. doi: 10.1109/55.605443
    [14]
    Dogˇ an S, Teke A, Huang D, et al. 4H-SiC photoconductive switching devices for use in high-power applications[J]. Applied Physics Letters, 2003, 82(18): 3107-3109. doi: 10.1063/1.1571667
    [15]
    Zhu K, Dogˇ an S, Moon Y T, et al. Effect of n+-GaN subcontact layer on 4H-SiC high-power photoconductive switch[J]. Applied Physics Letters, 2005, 86: 261108. doi: 10.1063/1.1951056
    [16]
    Mauch D, Sullivan W, Bullick A, et al. High power lateral silicon carbide photoconductive semiconductor switches and investigation of degradation mechanisms[J]. IEEE Trans Plasma Science, 2015, 43(6): 2021-2031. doi: 10.1109/TPS.2015.2424154
    [17]
    Tiskumara R, Joshi R P, Mauch D, et al. Analysis of high field effects on the steady-state current-voltage response of semi-insulating 4H-SiC for photoconductive switch applications[J]. Journal of Applied Physics, 2015, 118: 095701. doi: 10.1063/1.4929809
    [18]
    Chowdhury A R, Mauch D, Joshi R P, et al. Contact extensions over a high-dielectric layer for surface field mitigation in high power 4H-SiC photoconductive switches[J]. IEEE Trans Electron Devices, 2016, 63(8): 3171-3176.
    [19]
    刘金锋, 袁建强, 刘宏伟, 等. 影响碳化硅光导开关最小导通电阻的因素[J]. 强激光与粒子束, 2012, 24(3): 607-611. doi: 10.3788/HPLPB20122403.0607

    Liu Jinfeng, Yuan Jianqiang, Liu Hongwei, et al. Factors affecting minimum on-state resistance of SiC photoconductive semiconductor switch. High Power Laser and Particle Beams, 2012, 24(3): 607-611 doi: 10.3788/HPLPB20122403.0607
    [20]
    周天宇, 刘学超, 代冲冲, 等. V掺杂6H-SiC光导开关制备与性能研究[J]. 强激光与粒子束, 2014, 26: 045043. doi: 10.11884/HPLPB201426.045043

    Zhou Tianyu, Liu Xuechao, Dai Chongchong, et al. Fabrication and properties of V-doped semi-insulating 6H-SiC photoconductive semiconductor switch. High Power Laser and Particle Beams, 2014, 26: 045043 doi: 10.11884/HPLPB201426.045043
    [21]
    Cao Penghui, Huang Wei, Guo Hui, et al. Performance of a vertical 4H-SiC photoconductive switch with AZO transparent conductive window and silver mirror reflector[J]. IEEE Trans Electron Devices, 2018, 65(5): 2047-2051. doi: 10.1109/TED.2018.2815634
    [22]
    Xiao Longfei, Yang Xianglong, Duan Peng, et al. Effect of electron avalanche breakdown on a high-purity semi-insulating 4H-SiC photoconductive semiconductor switch under intrinsic absorption[J]. Applied Optics, 2018, 57(11): 2804-2808. doi: 10.1364/AO.57.002804
    [23]
    Luan Chongbiao, Li Boting, Zhao Juan, et al. A new phenomenon in semi-insulating 4H-SiC photoconductive semiconductor switches[J]. IEEE Trans Electron Devices, 2018, 65(1): 172-175. doi: 10.1109/TED.2017.2777600
  • Relative Articles

    [1]Zhou Hongbing, Zhang Haoyu, Li Min, Feng Xi, Xie Lianghua, Liu Yu, Chu Qiuhui, Yan Yuefang, Tao Rumao, Lin Honghuan, Wang Jianjun, Yan Lixin, Jing Feng. Progress in active phase control for large-scale coherent laser beam combining[J]. High Power Laser and Particle Beams, 2024, 36(6): 061001. doi: 10.11884/HPLPB202436.230426
    [2]Liu Jiaying, Li Ziqiang, Yang Ran, Zou Fan, Yang Xu, Zhou Xin, Pan Ziting, Pan Likang, Li Yuting, Jiang Jiali, Li Feng, Geng Chao, Li Xinyang. Research progress of coherent beam combining technique of phased fiber laser array[J]. High Power Laser and Particle Beams, 2023, 35(4): 041003. doi: 10.11884/HPLPB202335.220323
    [3]Gao Heng, Li Binglin, Yang Yifeng, He Bing. Performance of multi-frequency dithering algorithm in coherent beam combination[J]. High Power Laser and Particle Beams, 2023, 35(4): 041009. doi: 10.11884/HPLPB202335.220285
    [4]Long Jinhu, Su Rongtao, Chang Hongxiang, Hou Tianyue, Chang Qi, Jiang Min, Zhang Jiayi, Ma Yanxing, Ma Pengfei, Zhou Pu. Coherent combining of fiber laser based on internal phase locking in spatial structure[J]. High Power Laser and Particle Beams, 2023, 35(4): 041008. doi: 10.11884/HPLPB202335.220258
    [5]Tan Qilong, Zhang Xia, Kang Hu, Peng Zhiqing, Li Xiaowei, Yang Mochou, Feng Guoying. Surface plasmon resonance refractive index sensor based on microstructured fiber with air-hole[J]. High Power Laser and Particle Beams, 2022, 34(5): 059001. doi: 10.11884/HPLPB202234.220062
    [6]Ma Pengfei, Wang Xiaolin, Su Rongtao, Ma Yanxing, Xu Xiaoyong, Zhou Pu, Liu Zejin. Coherent polarization beam combining of fiber lasers to 2 kW power-level[J]. High Power Laser and Particle Beams, 2016, 28(04): 040102. doi: 10.11884/HPLPB201628.120102
    [7]Ma Yi, Yan Hong, Tian Fei, Sun Yinhong, Zhao Lei, Wang Shufeng, Xie Gengcheng, Li Tenglong, Wang Xiaojun, Liang Xiaobao, Wang Yanshan, Ran Huanhuan, Peng Wanjing, Ke Weiwei, Feng Yujun, Tang Chun, Zhang Kai, Gao Qingsong. Common aperture spectral beam combination of fiber lasers with 5 kW power high-efficiency and high-quality output[J]. High Power Laser and Particle Beams, 2015, 27(04): 040101. doi: 10.11884/HPLPB201527.040101
    [8]Ji Xiang, Wang Xiaolin, Zhou Pu, Su Rongtao, Yuan Xiangyu, Lu Qisheng, Zhao Yijun. Passive coherent combination of all-fiber multichannel laser based on optical feed-back loop cavity[J]. High Power Laser and Particle Beams, 2014, 26(01): 011002. doi: 10.3788/HPLPB201426.011002
    [9]Su Rongtao, Zhou Pu, Wang Xiaolin, Ma Yanxing, Xu Xiaojun. Phase locking of a coherent array of 32 fiber lasers[J]. High Power Laser and Particle Beams, 2014, 26(11): 110101. doi: 10.11884/HPLPB201426.110101
    [10]Jiang Man, Xiao Hu, Zhou Pu, Wang Xiaolin, Liu Zejin. High power self-organized coherent beam combination of 1018 nm Yb-doped fiber lasers[J]. High Power Laser and Particle Beams, 2013, 25(09): 2219-2222. doi: 10.3788/HPLPB20132509.2219
    [11]Ji Xiang, Zhou Pu, Wang Xiaolin, Lu Qisheng, Zhao Yijun. Self-organized coherent combination of multichannel fiber lasers based on power coupler[J]. High Power Laser and Particle Beams, 2013, 25(03): 607-610. doi: 10.3788/HPLPB20132503.0607
    [12]Wang Detian, Zhou Weijun, Wen Weifeng, Peng Qixian, Li Zeren, Hu Wenhua, Li Zhongjian. Coherent combination of fiber lasers using heterodyne method[J]. High Power Laser and Particle Beams, 2013, 25(05): 1125-1128. doi: 10.3788/HPLPB20132505.1125
    [13]Zhu Yadong, Xiao Hu, Wang Xiaolin, Ma Yanxing, Zhou Pu. Influence of frequency components on self-organized coherent combination of fiber lasers[J]. High Power Laser and Particle Beams, 2012, 24(01): 33-38.
    [14]Su Rongtao, Zhou Pu, Wang Xiaolin, Han Kai, Xu Xiaojun. 光纤激光相干合成高速高精度相位控制器[J]. High Power Laser and Particle Beams, 2012, 24(06): 1290-1294. doi: 10.3788/HPLPB20122406.1290
    [15]lei bing, wang ling, feng ying. Coherent beam combining of fiber lasers based on common ring cavity coupling configuration[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- .
    [16]ma yanxing, wang xiaolin, zhou pu, ma haotong, zhao haichuan, xu xiaojun, si lei, liu zejin, zhao yijun. Coherent beam combination of fiber laser array with multi-dithering[J]. High Power Laser and Particle Beams, 2010, 22(12): 0- .
    [17]zhou pu, ma yanxing, wang xiaolin, ma haotong, xu xiaojun, liu zejin. Coherent beam combining of fiber amplifiers based on stimulated annealing algorithm[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- .
    [18]zhou pu, hou jing, chen zi-lun, liu ze-jin. Experimental study on coherent combining of two self-organized fiber lasers[J]. High Power Laser and Particle Beams, 2007, 19(12): 0- .
    [19]zhou pu, hou jing, chen zi-lun, liu ze-jin. Effect of partially coherence of high power fiber laser on coherent combination[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- .
    [20]xiao rui, hou jing, jiang zong-fu, lu qi-sheng. Coherent combining and closed loop controlling of two fiber lasers[J]. High Power Laser and Particle Beams, 2007, 19(01): 0- .
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100125150
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.9 %FULLTEXT: 18.9 %META: 73.0 %META: 73.0 %PDF: 8.1 %PDF: 8.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.0 %其他: 4.0 %其他: 1.4 %其他: 1.4 %China: 0.5 %China: 0.5 %Doylestown: 0.1 %Doylestown: 0.1 %Falls Church: 3.0 %Falls Church: 3.0 %San Lorenzo: 0.0 %San Lorenzo: 0.0 %Seattle: 0.1 %Seattle: 0.1 %Taichung: 0.1 %Taichung: 0.1 %United States: 0.0 %United States: 0.0 %[]: 1.4 %[]: 1.4 %上海: 1.4 %上海: 1.4 %上饶: 0.0 %上饶: 0.0 %东莞: 0.4 %东莞: 0.4 %中卫: 0.0 %中卫: 0.0 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.0 %丽水: 0.0 %京畿道: 0.0 %京畿道: 0.0 %保定: 0.3 %保定: 0.3 %内江: 0.1 %内江: 0.1 %北京: 4.6 %北京: 4.6 %北海: 0.0 %北海: 0.0 %十堰: 0.1 %十堰: 0.1 %南京: 1.1 %南京: 1.1 %南宁: 0.1 %南宁: 0.1 %南昌: 0.1 %南昌: 0.1 %南通: 0.0 %南通: 0.0 %台北: 0.2 %台北: 0.2 %台州: 0.7 %台州: 0.7 %合肥: 0.9 %合肥: 0.9 %吉林: 0.0 %吉林: 0.0 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸宁: 0.0 %咸宁: 0.0 %哈尔滨: 0.4 %哈尔滨: 0.4 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.0 %嘉兴: 0.0 %堪培拉: 0.2 %堪培拉: 0.2 %大连: 0.6 %大连: 0.6 %大阪: 0.6 %大阪: 0.6 %大阪府: 0.1 %大阪府: 0.1 %天津: 1.2 %天津: 1.2 %太原: 0.5 %太原: 0.5 %娄底: 0.1 %娄底: 0.1 %宁波: 0.0 %宁波: 0.0 %安康: 0.1 %安康: 0.1 %宣城: 0.1 %宣城: 0.1 %巴音郭楞: 0.2 %巴音郭楞: 0.2 %巴黎: 0.3 %巴黎: 0.3 %常德: 0.3 %常德: 0.3 %广州: 1.2 %广州: 1.2 %廊坊: 0.1 %廊坊: 0.1 %弗吉: 0.0 %弗吉: 0.0 %张家口: 0.8 %张家口: 0.8 %张家界: 0.0 %张家界: 0.0 %徐州: 0.2 %徐州: 0.2 %德州: 0.0 %德州: 0.0 %怀化: 0.4 %怀化: 0.4 %意法半: 0.0 %意法半: 0.0 %成都: 1.7 %成都: 1.7 %扬州: 0.3 %扬州: 0.3 %新泽西州: 0.0 %新泽西州: 0.0 %无锡: 0.2 %无锡: 0.2 %昆明: 0.7 %昆明: 0.7 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %景德镇: 0.1 %景德镇: 0.1 %杭州: 0.8 %杭州: 0.8 %枣庄: 0.0 %枣庄: 0.0 %桂林: 0.4 %桂林: 0.4 %武汉: 2.0 %武汉: 2.0 %汕头: 0.2 %汕头: 0.2 %江门: 0.0 %江门: 0.0 %沈阳: 0.2 %沈阳: 0.2 %泰安: 0.0 %泰安: 0.0 %济南: 0.1 %济南: 0.1 %淮南: 0.0 %淮南: 0.0 %深圳: 1.1 %深圳: 1.1 %温州: 0.0 %温州: 0.0 %湖州: 0.8 %湖州: 0.8 %湘潭: 0.2 %湘潭: 0.2 %湘西: 0.3 %湘西: 0.3 %湛江: 0.1 %湛江: 0.1 %漯河: 0.6 %漯河: 0.6 %漳州: 0.0 %漳州: 0.0 %烟台: 0.1 %烟台: 0.1 %益阳: 0.1 %益阳: 0.1 %盐城: 0.0 %盐城: 0.0 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %科珀斯克里斯蒂: 0.4 %科珀斯克里斯蒂: 0.4 %秦皇岛: 0.0 %秦皇岛: 0.0 %约翰内斯堡: 0.0 %约翰内斯堡: 0.0 %纽约: 0.0 %纽约: 0.0 %绵阳: 1.4 %绵阳: 1.4 %芒廷维尤: 21.9 %芒廷维尤: 21.9 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.1 %苏州: 0.1 %萍乡: 0.0 %萍乡: 0.0 %蚌埠: 0.0 %蚌埠: 0.0 %衡水: 0.3 %衡水: 0.3 %衡阳: 0.7 %衡阳: 0.7 %衢州: 0.5 %衢州: 0.5 %襄阳: 0.1 %襄阳: 0.1 %西宁: 25.3 %西宁: 25.3 %西安: 0.3 %西安: 0.3 %西雅图: 0.0 %西雅图: 0.0 %诺沃克: 1.4 %诺沃克: 1.4 %贵阳: 0.1 %贵阳: 0.1 %费利蒙: 0.0 %费利蒙: 0.0 %运城: 0.5 %运城: 0.5 %遵义: 0.1 %遵义: 0.1 %邢台: 0.0 %邢台: 0.0 %邯郸: 0.0 %邯郸: 0.0 %邵阳: 0.1 %邵阳: 0.1 %郑州: 0.2 %郑州: 0.2 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.4 %重庆: 0.4 %金华: 0.1 %金华: 0.1 %釜山: 0.2 %釜山: 0.2 %长春: 0.3 %长春: 0.3 %长沙: 3.5 %长沙: 3.5 %长治: 0.1 %长治: 0.1 %青岛: 0.2 %青岛: 0.2 %香港: 0.0 %香港: 0.0 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %黄冈: 0.0 %黄冈: 0.0 %其他其他ChinaDoylestownFalls ChurchSan LorenzoSeattleTaichungUnited States[]上海上饶东莞中卫临汾丹东丽水京畿道保定内江北京北海十堰南京南宁南昌南通台北台州合肥吉林呼和浩特咸宁哈尔滨哥伦布嘉兴堪培拉大连大阪大阪府天津太原娄底宁波安康宣城巴音郭楞巴黎常德广州廊坊弗吉张家口张家界徐州德州怀化意法半成都扬州新泽西州无锡昆明晋城普洱景德镇杭州枣庄桂林武汉汕头江门沈阳泰安济南淮南深圳温州湖州湘潭湘西湛江漯河漳州烟台益阳盐城石家庄福州科珀斯克里斯蒂秦皇岛约翰内斯堡纽约绵阳芒廷维尤芝加哥苏州萍乡蚌埠衡水衡阳衢州襄阳西宁西安西雅图诺沃克贵阳费利蒙运城遵义邢台邯郸邵阳郑州鄂州重庆金华釜山长春长沙长治青岛香港香港特别行政区黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (2234) PDF downloads(388) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return