Volume 31 Issue 3
Mar.  2019
Turn off MathJax
Article Contents
Wu Yuji, Wang Qiuping, Wang Feng, et al. Optical properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2019, 31: 032001. doi: 10.11884/HPLPB201931.190045
Citation: Wu Yuji, Wang Qiuping, Wang Feng, et al. Optical properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2019, 31: 032001. doi: 10.11884/HPLPB201931.190045

Optical properties of wide-angle velocity interferometer system for any reflector

doi: 10.11884/HPLPB201931.190045
  • Received Date: 2019-02-21
  • Rev Recd Date: 2019-03-14
  • Publish Date: 2019-03-15
  • Optical properties of wide-angle velocity interferometer system for any reflector (VISAR) are studied in this paper. The principle of wide-angle VISAR is expounded. It reveals that the role of the ellipsoid in wide-angle VISAR is to make the inner surface of capsule into a curved virtual image at the center of target. The effect of imaging bending on the formation of dynamic interference fringes is simulated by Zemax and a shaped optical fiber plate is proposed for image correction. The influence of assembly error is also studied. To obtain a good imaging result, the positional deviation of the ellipsoidal mirror should not exceed 30 μm, the inclination should not exceed 4°, the manufacturing error requires less than 0.1 μm in long axis direction and 4 μm in short axis direction, and reflectance needs to be higher than 70%. More possible factors of affecting dynamic fringes, other methods of imaging correction, correspondence between object and image are discussed, along with the potential development of wide-angle VISAR. The optical properties of wide-angle VISAR is a basis for improving the wide-angle diagnostic capability, and is of great significance for the quantitative observation for driving symmetry of capsule in inertial confinement fusion.
  • loading
  • [1]
    Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities thermonuclear (CTR) applications[J]. Nature, 1972, 239(5368): 139-142. doi: 10.1038/239139a0
    [2]
    Lindl J. Development of the indirect drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2: 3933. doi: 10.1063/1.871025
    [3]
    Craxton R S, Anderson K S, Boehly T R, et al. Direct-drive inertial confinement fusion: A review[J]. Physics of Plasmas, 2015, 22: 110501. doi: 10.1063/1.4934714
    [4]
    Landen O L, Edwards J, Haan S W, et al. Capsule implosion optimization during the indirect-drive National Ignition Campaign[J]. Physics of Plasmas, 2011, 18: 051002. doi: 10.1063/1.3592170
    [5]
    Munro D H, Celliers P M, Collins G W, et al. Shock timing technique for the National Ignition Facility[J]. Physics of Plasmas, 2001, 8(5): 2245-2250. . doi: 10.1063/1.1347037
    [6]
    Barker L M, Hollenbach R E. Laser interferometer for measuring high velocities of any reflecting surface[J]. Journal of Applied Physics, 1972, 43(11): 4669-4675. doi: 10.1063/1.1660986
    [7]
    Celliers P M, Collins G W, Da Silva L B, et al. Accurate measurement of laser-driven shock trajectories with velocity interferometry[J]. Applied Physics Letters, 1998, 73(10): 1320. doi: 10.1063/1.121882
    [8]
    Celliers P M, Bradley D K, Collins G W, et al. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility[J]. Review of Scientific Instruments, 2004, 75(11): 4916-4929. doi: 10.1063/1.1807008
    [9]
    Wu Yuji, Wang Feng, Li Yulong, et al. Research on a wide-angle diagnostic method for shock wave velocity at SG-Ⅲ prototype facility[J]. Nucl Fusion, 2018, 58: 076003. doi: 10.1088/1741-4326/aabeed
    [10]
    Atzeni S, Ribeyre X, Schurtz G, et al. Shock ignition of thermonuclear fuel: principles and modelling[J]. Nuclear Fusion, 2014, 54: 054008. doi: 10.1088/0029-5515/54/5/054008
    [11]
    Robey H F, Boehly T R, Olson R E, et al. Experimental validation of a diagnostic technique for tuning the fourth shock timing on National Ignition Facility[J]. Physics of Plasmas, 2010, 17: 012703. doi: 10.1063/1.3276154
    [12]
    Piriz A R. Conditions for the ignition of imploding spherical shell targets[J]. Nuclear Fusion, 1996, 36(10): 1395. doi: 10.1088/0029-5515/36/10/I13
    [13]
    Petrasso R D. Rayleigh's challenge endures[J]. Nature, 1994, 367(6460): 217-218. doi: 10.1038/367217a0
    [14]
    Batani D, Casner A, Depierreux S, et al. Physics issues for shock ignition[J]. Nuclear Fusion, 2014, 54: 054009. doi: 10.1088/0029-5515/54/5/054009
    [15]
    Tikhonchuk V T, Colaïtis A, Vallet A, et al. Physics of laser-plasma interaction for shock ignition of fusion reactions[J]. Plasma Physics and Controlled Fusion, 2015, 58: 014018.
    [16]
    Soubiran F, Mazevet S, Winisdoerffer C, et al. Optical signature of hydrogen-helium demixing at extreme density-temperature conditions[J]. Physical Review B, 2013, 87: 165114. doi: 10.1103/PhysRevB.87.165114
    [17]
    Callahan D A, Meezan N B, Glenzer S H, et al. The velocity campaign for ignition on NIF[J]. Physics of Plasmas, 2012, 19: 056305. doi: 10.1063/1.3694840
    [18]
    Hicks D G, Boehly T R, Celliers P M, et al. Shock compression of quartz in the high-pressure fluid regime[J]. Physics of Plasmas, 2005, 12: 082702. doi: 10.1063/1.2009528
    [19]
    Hicks D G, Boehly T R, Eggert J H, et al. Dissociation of liquid silica at high pressures and temperatures[J]. Physical Review Letters, 2006, 97: 025502. doi: 10.1103/PhysRevLett.97.025502
    [20]
    Edwards J, Lorenz K T, Remington B A, et al. Laser-driven plasma loader for shockless compression and acceleration of samples in the solid state[J]. Physical Review Letters, 2004, 92: 075002. doi: 10.1103/PhysRevLett.92.075002
    [21]
    Murakami M, Nagatomo H, Johzaki T, et al. Impact ignition as a track to laser fusion[J]. Nuclear Fusion, 2014, 54: 054007. doi: 10.1088/0029-5515/54/5/054007
    [22]
    McWilliams R S, Eggert J H, Hicks D G, et al. Strength effects in diamond under shock compression from 0.1 to 1 TPa[J]. Physical Review B, 2010, 81: 014111. doi: 10.1103/PhysRevB.81.014111
    [23]
    Moody J D, Robey H F, Celliers P M, et al. Early time implosion symmetry from two-axis shock-timing measurements on indirect drive NIF experiments. Physics of Plasmas, 2014, 21: 092702. doi: 10.1063/1.4893136
    [24]
    Robey H F, Moody J D, Celliers P M, et al. Measurement of high-pressure shock waves in cryogenic deuterium-tritium ice layered capsule implosions on NIF[J]. Physical Review Letters, 2013, 111: 065003. doi: 10.1103/PhysRevLett.111.065003
    [25]
    Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Journal of the Optical Society of America, 1982, 72(12): 156-160.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article views (1431) PDF downloads(115) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return