Citation: | Wu Yuji, Wang Qiuping, Wang Feng, et al. Optical properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2019, 31: 032001. doi: 10.11884/HPLPB201931.190045 |
[1] |
Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities thermonuclear (CTR) applications[J]. Nature, 1972, 239(5368): 139-142. doi: 10.1038/239139a0
|
[2] |
Lindl J. Development of the indirect drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2: 3933. doi: 10.1063/1.871025
|
[3] |
Craxton R S, Anderson K S, Boehly T R, et al. Direct-drive inertial confinement fusion: A review[J]. Physics of Plasmas, 2015, 22: 110501. doi: 10.1063/1.4934714
|
[4] |
Landen O L, Edwards J, Haan S W, et al. Capsule implosion optimization during the indirect-drive National Ignition Campaign[J]. Physics of Plasmas, 2011, 18: 051002. doi: 10.1063/1.3592170
|
[5] |
Munro D H, Celliers P M, Collins G W, et al. Shock timing technique for the National Ignition Facility[J]. Physics of Plasmas, 2001, 8(5): 2245-2250. . doi: 10.1063/1.1347037
|
[6] |
Barker L M, Hollenbach R E. Laser interferometer for measuring high velocities of any reflecting surface[J]. Journal of Applied Physics, 1972, 43(11): 4669-4675. doi: 10.1063/1.1660986
|
[7] |
Celliers P M, Collins G W, Da Silva L B, et al. Accurate measurement of laser-driven shock trajectories with velocity interferometry[J]. Applied Physics Letters, 1998, 73(10): 1320. doi: 10.1063/1.121882
|
[8] |
Celliers P M, Bradley D K, Collins G W, et al. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility[J]. Review of Scientific Instruments, 2004, 75(11): 4916-4929. doi: 10.1063/1.1807008
|
[9] |
Wu Yuji, Wang Feng, Li Yulong, et al. Research on a wide-angle diagnostic method for shock wave velocity at SG-Ⅲ prototype facility[J]. Nucl Fusion, 2018, 58: 076003. doi: 10.1088/1741-4326/aabeed
|
[10] |
Atzeni S, Ribeyre X, Schurtz G, et al. Shock ignition of thermonuclear fuel: principles and modelling[J]. Nuclear Fusion, 2014, 54: 054008. doi: 10.1088/0029-5515/54/5/054008
|
[11] |
Robey H F, Boehly T R, Olson R E, et al. Experimental validation of a diagnostic technique for tuning the fourth shock timing on National Ignition Facility[J]. Physics of Plasmas, 2010, 17: 012703. doi: 10.1063/1.3276154
|
[12] |
Piriz A R. Conditions for the ignition of imploding spherical shell targets[J]. Nuclear Fusion, 1996, 36(10): 1395. doi: 10.1088/0029-5515/36/10/I13
|
[13] |
Petrasso R D. Rayleigh's challenge endures[J]. Nature, 1994, 367(6460): 217-218. doi: 10.1038/367217a0
|
[14] |
Batani D, Casner A, Depierreux S, et al. Physics issues for shock ignition[J]. Nuclear Fusion, 2014, 54: 054009. doi: 10.1088/0029-5515/54/5/054009
|
[15] |
Tikhonchuk V T, Colaïtis A, Vallet A, et al. Physics of laser-plasma interaction for shock ignition of fusion reactions[J]. Plasma Physics and Controlled Fusion, 2015, 58: 014018.
|
[16] |
Soubiran F, Mazevet S, Winisdoerffer C, et al. Optical signature of hydrogen-helium demixing at extreme density-temperature conditions[J]. Physical Review B, 2013, 87: 165114. doi: 10.1103/PhysRevB.87.165114
|
[17] |
Callahan D A, Meezan N B, Glenzer S H, et al. The velocity campaign for ignition on NIF[J]. Physics of Plasmas, 2012, 19: 056305. doi: 10.1063/1.3694840
|
[18] |
Hicks D G, Boehly T R, Celliers P M, et al. Shock compression of quartz in the high-pressure fluid regime[J]. Physics of Plasmas, 2005, 12: 082702. doi: 10.1063/1.2009528
|
[19] |
Hicks D G, Boehly T R, Eggert J H, et al. Dissociation of liquid silica at high pressures and temperatures[J]. Physical Review Letters, 2006, 97: 025502. doi: 10.1103/PhysRevLett.97.025502
|
[20] |
Edwards J, Lorenz K T, Remington B A, et al. Laser-driven plasma loader for shockless compression and acceleration of samples in the solid state[J]. Physical Review Letters, 2004, 92: 075002. doi: 10.1103/PhysRevLett.92.075002
|
[21] |
Murakami M, Nagatomo H, Johzaki T, et al. Impact ignition as a track to laser fusion[J]. Nuclear Fusion, 2014, 54: 054007. doi: 10.1088/0029-5515/54/5/054007
|
[22] |
McWilliams R S, Eggert J H, Hicks D G, et al. Strength effects in diamond under shock compression from 0.1 to 1 TPa[J]. Physical Review B, 2010, 81: 014111. doi: 10.1103/PhysRevB.81.014111
|
[23] |
Moody J D, Robey H F, Celliers P M, et al. Early time implosion symmetry from two-axis shock-timing measurements on indirect drive NIF experiments. Physics of Plasmas, 2014, 21: 092702. doi: 10.1063/1.4893136
|
[24] |
Robey H F, Moody J D, Celliers P M, et al. Measurement of high-pressure shock waves in cryogenic deuterium-tritium ice layered capsule implosions on NIF[J]. Physical Review Letters, 2013, 111: 065003. doi: 10.1103/PhysRevLett.111.065003
|
[25] |
Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Journal of the Optical Society of America, 1982, 72(12): 156-160.
|