Volume 31 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
Zhu Yanju, Xie Shuguo, Li Yuanhao, et al. Research on blind recovery method of wideband electromagnetic image convolutional neural network[J]. High Power Laser and Particle Beams, 2019, 31: 103210. doi: 10.11884/HPLPB201931.190191
Citation: Zhu Yanju, Xie Shuguo, Li Yuanhao, et al. Research on blind recovery method of wideband electromagnetic image convolutional neural network[J]. High Power Laser and Particle Beams, 2019, 31: 103210. doi: 10.11884/HPLPB201931.190191

Research on blind recovery method of wideband electromagnetic image convolutional neural network

doi: 10.11884/HPLPB201931.190191
  • Received Date: 2019-05-30
  • Rev Recd Date: 2019-06-17
  • Publish Date: 2019-10-15
  • In the process of electromagnetic interference sources imaging testing using parabolic reflection, the diffraction phenomenon of the system leads to blurred and low resolution images. Interference sources have different resolution capabilities in different areas and frequencies, so it's difficult to enhance image resolution by using existed super-resolution algorithm. In order to realize the blind recovery of wideband electromagnetic images, a method based on convolutional neural network is proposed. Network training is the process which directly inputs a blurred image and reconstructs a high quality image without assuming any particular blur and noise model. Both experiment and simulation results demonstrate that the convolutional neural network blind recovery method outperforms other blind recovery calculations in different imaging regions of wide frequency band.
  • loading
  • [1]
    李良超, 杨建宇, 郑鑫, 等. 无源毫米波超分辨算法及实时性研究[J]. 电子科技大学学报, 2009, 38(6): 952-956. https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX200906012.htm

    Li Liangchao, Yang Jianyu, Zheng Xin, et al. Research on passive millimeter wave image super-resolution algorithm and real-time implementation. Journal of University of Electronic Science and Technology of China, 2009, 38(6): 952-956 https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX200906012.htm
    [2]
    杜鑫, 谢树果, 郝旭春, 等. 一种电磁干扰源成像多分辨率分区算法[J]. 强激光与粒子束, 2015, 27: 103223. doi: 10.11884/HPLPB201527.103223

    Du Xin, Xie Shuguo, Hao Xuchun, et al. An electromagnetic interference source imaging algorithm of multi-resolution partitions. High Power Laser and Particle Beams, 2015, 27: 103223 doi: 10.11884/HPLPB201527.103223
    [3]
    李垣江, 李跃华, 张光锋. 一种改进的毫米波图像超分辨复原方法[J]. 现代雷达, 2011, 33(8): 43-46. https://www.cnki.com.cn/Article/CJFDTOTAL-XDLD201108013.htm

    Li Yuanjiang, Li Yuehua, Zhang Guangfeng. A modified method of super-resolution restoration for passive millimeter wave images. Modern Radar, 2011, 33(8): 43-46 https://www.cnki.com.cn/Article/CJFDTOTAL-XDLD201108013.htm
    [4]
    Chan T F, Wong C. Total variation blind deconvolution diffraction[J]. IEEE Trans Image Processing, 1998, 7(3): 370-375. doi: 10.1109/83.661187
    [5]
    Krishnan D, Tay T, Fergus R. Blind deconvolution using a normalized sparsity measure[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2011: 233-240.
    [6]
    Levin A, Weiss Y, Durand F, et al. Efficient marginal likelihood optimization in blind deconvolution[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2011: 2657-2664.
    [7]
    Xu L, Zheng S, Jia J. Unnatural L0 sparse representation for natural image deblurring[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2013: 1107-1114.
    [8]
    Comaniciu D, Meer P. Mean shift analysis and applications[C]//Proceedings of IEEE 7th International Conference on Computer Vision. 1999, 2: 1197-1203.
    [9]
    Sun L, Cho S, Wang J, et al. Edge-based blur kernel estimation using patch priors[C]//IEEE Conference on Computational Photography. 2013: 1-8.
    [10]
    Michal H, Jan K, Pavel Z, et al. Convolutional neural networks for direct text deblurring[C]//British Machine Vision Conference. 2015: 1-12.
    [11]
    Oliver W, Josef S, Andrew Z, et al. Non-uniform deblurring for shaken images[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (1041) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return