Volume 31 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
Wan Haojiang, Wei Guanghui, Chen Yazhou, et al. Numerical evaluation of interception performance for ultra-high lightning rod system[J]. High Power Laser and Particle Beams, 2019, 31: 103205. doi: 10.11884/HPLPB201931.190204
Citation: Wan Haojiang, Wei Guanghui, Chen Yazhou, et al. Numerical evaluation of interception performance for ultra-high lightning rod system[J]. High Power Laser and Particle Beams, 2019, 31: 103205. doi: 10.11884/HPLPB201931.190204

Numerical evaluation of interception performance for ultra-high lightning rod system

doi: 10.11884/HPLPB201931.190204
  • Received Date: 2019-06-05
  • Rev Recd Date: 2019-07-06
  • Publish Date: 2019-10-15
  • In view of the situation that the ultra-high lightning rod systems are increasing, but the overall interception performances of them are difficult to be effectively evaluated by current standards, a numerical evaluation method for the interception performance of surface objects or devices is developed based on the subgrid technology. The numerical evaluation model of the interception performance for the ultra-high lightning rod system is proposed, and the numerical evaluation experiment for the interception performance of the typical ultra-high lightning rod systems is carried out. The results show that the interception probability at the top of the air-termination system is the highest, but other parts of the upper part of the air-termination system can also be subjected to side flash. The probability of side flash that occurs on the upper part of the air-termination system increases with the height increase of the side flash point. Moreover, the intensity of lightning or thundercloud can also affect the interception probability of different parts of the air-termination system. The smaller the intensity of lightning or thundercloud, the lower the interception probability of the top of the air-termination system, the greater the probability of side flash that occurs on the air-termination system. And the coverage of the side flash points will also gradually expand to the lower part of the air-termination system.
  • loading
  • [1]
    IEC 62305-1, Protection against lightning, Part 1: General principles[S].
    [2]
    GB 50057-2010, 建筑物防雷设计规范[S].

    GB 50057-2010, Code for design protection of structures against lightning
    [3]
    DL/T 620-1997, 交流电气装置的过电压保护和绝缘配合[S].

    DL/T 620-1997, Overvoltage protection and insulation coordination for AC electrical installations
    [4]
    刘蜀岷. 避雷针保护范围不能"绝对化"[J]. 高电压技术, 2005, 31(7): 82-83. doi: 10.3969/j.issn.1003-6520.2005.07.030

    Liu Shumin. Avoiding absolutization of protection range of lightning rods. High Voltage Engineering, 2005, 31(7): 82-83 doi: 10.3969/j.issn.1003-6520.2005.07.030
    [5]
    周萍, 吕英华, 陈志红, 等. 航天系统雷电防护技术发展综述及展望[J]. 宇航学报, 2018, 39(8): 827-837. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201808001.htm

    Zhou Ping, Lü Yinghua, Chen Zhihong, et al. Review and prospect of lightning protection technology for an astronautic system. Journal of Astronautics, 2018, 39(8): 827-837 https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201808001.htm
    [6]
    曾嵘, 周旋, 王泽众, 等. 国际防雷研究进展及前沿述评[J]. 高电压技术, 2015, 41(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201501001.htm

    Zeng Rong, Zhou Xuan, Wang Zezhong, et al. Review of research advances and fronts on international lightning and protection. High Voltage Engineering, 2015, 41(1): 1-13 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201501001.htm
    [7]
    Niemeyer L, Pietronero L, Wiesmann H J. Fractal dimension of dielectric breakdown[J]. Physical Review Letters, 1984, 52(12): 1033-1036. doi: 10.1103/PhysRevLett.52.1033
    [8]
    Petrov N I, Petrova G N, D'Alessandro F. Quantification of the probability of lightning strikes to structures using a fractal approach[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10: 641-654. doi: 10.1109/TDEI.2003.1219649
    [9]
    邵程远. 建筑物雷击概率特性研究[D]. 南京: 南京信息工程大学, 2011: 20-36.

    Shao Chengyuan. Research on the probability characteristics of lightning strikes in buildings. Nanjing: Nanjing University of Information Science & Technology, 2011: 20-36
    [10]
    Zhang Xuewei, Dong Lin, He Jinliang, et al. Study on the effectiveness of single lightning rods by a fractal approach[J]. Journal of Lightning Research, 2009, 1: 1-8. doi: 10.2174/1652803400901010001
    [11]
    裴高飞, 陈海林, 高成. 基于先导发展模型的舰艇避雷防护评估仿真[J]. 强激光与粒子束, 2018, 30: 013202. doi: 10.11884/HPLPB201830.170193

    Pei Gaofei, Chen Hailin, Gao Cheng. Lightning protection evaluation technology of surface ship based on leader progression model. High Power Laser and Particle Beams, 2018, 30: 013202 doi: 10.11884/HPLPB201830.170193
    [12]
    陈强, 魏光辉, 陈亚洲, 等. 3维电介质击穿模型在雷电防护系统评估试验中的应用[J]. 强激光与粒子束, 2011, 23(3): 721-726. http://www.hplpb.com.cn/article/id/5087

    Chen Qiang, Wei Guanghui, Chen Yazhou, et al. Application of three-dimensional dielectric breakdown model to lightning protection system evaluation. High Power Laser and Particle Beams, 2011, 23(3): 721-726 http://www.hplpb.com.cn/article/id/5087
    [13]
    万浩江, 魏光辉, 陈强, 等. 雷电先导放电的三维数值模拟与应用[J]. 高电压技术, 2013, 39(2): 430-436. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201302026.htm

    Wan Haojiang, Wei Guanghui, Chen Qiang, et al. Three-dimensional numerical simulation of lightning discharge and its application. High Voltage Engineering, 2013, 39(2): 430-436 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201302026.htm
    [14]
    Wiesmann H J, Zeller H R. A fractal model of dielectric breakdown and prebreakdown in solid dielectries[J]. Journal of Applied Physics, 1986, 60(5): 1770-1773. doi: 10.1063/1.337219
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (1126) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return