Wang Xuede, Li Yiming, Nie Xiangfan, et al. Effects of micro-scale laser shock peening on surface integrity of DZ17G alloy[J]. High Power Laser and Particle Beams, 2017, 29: 089001. doi: 10.11884/HPLPB201729.160550
Citation: Qiang Yu, Zhou Dongfang, Liu Qikun, et al. Novel absorptive frequency selective surface with wideband absorbing properties[J]. High Power Laser and Particle Beams, 2019, 31: 103222. doi: 10.11884/HPLPB201931.190210

Novel absorptive frequency selective surface with wideband absorbing properties

doi: 10.11884/HPLPB201931.190210
  • Received Date: 2019-06-12
  • Rev Recd Date: 2019-09-03
  • Publish Date: 2019-10-15
  • This paper presents a novel frequency selective surface with good transmissive property at high frequency and wideband absorption over lower band.The absorptive frequency selective surface structure is composed of a lossy layer and a bandpass layer.The analysis by the equivalent circuit method shows that the lossy layer should generate parallel resonance in the passband, so the specific equivalent circuit model is given and verified in Advanced Design System.In the design of the lossy layer, two lumped resistors are loaded into the metallic cross-type patch to divide it into two parts for parallel resonance.The bandpass layer is implemented using a lossless slot-type Frequency Selective Surface.The simulation results show that an insertion loss of 0.7 dB can be obtained at 12.75 GHz, and a wide absorption band from 4.8 GHz to 11.2 GHz is realized.A prototype was fabricated and tested, and the experimental results are in good agreement with the simulation results.
  • [1]
    Munk B. Frequency selective surfaces: Theory and design[J]. IEEE Signal Processing Magazine, 2002, 18(1): 94-94.
    [2]
    Costa F, Monorchio A. A frequency selective radome with wideband absorbing properties[J]. IEEE Trans Antennas and Propagation, 2012, 60(6): 2740-2747. doi: 10.1109/TAP.2012.2194640
    [3]
    王秀芝, 高劲松, 徐念喜, 等. 利用等效电路模型快速分析加载集总元件的微型化频率选择表面[J]. 物理学报, 2013, 62(20): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201320057.htm

    Wang Xiuzhi, Gao Jinsong, Xu Nianxi, et al. Quick analysis of miniaturized-element frequency selective surface that loaded with lumped elements by using an equivalent circuit model. Acta Physica Sinica, 2013, 62(20): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201320057.htm
    [4]
    Liu Liguo, Li Youquan, Meng Qingzhi, et al. Design of an invisible radome by frequency selective surfaces loaded with lumped resistors[J]. Chinese Physics Letters, 2013, 30: 064101. doi: 10.1088/0256-307X/30/6/064101
    [5]
    Zhou Hang, Yang Liwei, Qu Shaobo, et al. Experimental demonstration of an absorptive/transmissive FSS with magnetic material[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 114-117. doi: 10.1109/LAWP.2013.2296992
    [6]
    贾丹, 何应然, 韩国栋. 一种宽带吸波的隐身天线罩设计[J]. 现代雷达, 2017, 39(3): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-XDLD201703014.htm

    Jia Dan, He Yingran, Han Guodong. Design of a metamaterial stealth radome with broadband absorption. Modern Radar, 2017, 39(3): 66-69 https://www.cnki.com.cn/Article/CJFDTOTAL-XDLD201703014.htm
    [7]
    Li Bo, Shen Zhongxiang. Wideband 3D frequency selective rasorber[J]. IEEE Trans Antennas and Propagation, 2014, 62(12): 6536-6541. doi: 10.1109/TAP.2014.2361892
    [8]
    Chen Qiang, Bai Jiajun, Chen Liang, et al. A miniaturized absorptive frequency selective surface[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 80-83. doi: 10.1109/LAWP.2014.2355252
    [9]
    Shang Yuping, Shen Zhongxiang, Xiao Shaoqiu. Frequency-selective rasorber based on square-loop and cross-dipole arrays[J]. IEEE Trans Antennas and Propagation, 2014, 62(11): 5581-5589. doi: 10.1109/TAP.2014.2357427
    [10]
    Chen Liang, Bai Jiajun, Chen Qiang, et al. Design of absorptive frequency selective surface with good transmission at high frequency[J]. Electronics Letters, 2015, 51(12): 885-886. doi: 10.1049/el.2015.0228
    [11]
    Chen Qiang, Yang Shilin, Bai Jiajun, et al. Design of absorptive/transmissive frequency-selective surface based on parallel resonance[J]. IEEE Trans Antennas and Propagation, 2017: 1-1.
    [12]
    Zhang Kunzhe, Jiang Wen, Gong Shuxi. Design bandpass frequency selective surface absorber using LC resonators[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2586-2589. doi: 10.1109/LAWP.2017.2734918
    [13]
    李权, 庞永强, 沈理浩, 等. 一种低吸高透型频率选择表面设计与制备[J]. 微波学报, 2018, 34(5): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB201805007.htm

    Li Quan, Pang Yongqiang, Shen Lihao, et al. Design and preparation of frequency selection surface with property of low-frequency absorption and high-frequency transmission. Journal of Microwaves, 2018, 34(5): 26-30 https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB201805007.htm
    [14]
    Nakanishi T, Tamayama Y, Kitano M. Efficient second harmonic generation in a metamaterial with two resonant modes coupled through two varactor diodes[J]. Applied Physics Letters, 2012, 100(4): 2075.
  • Relative Articles

    [1]Xiao Hu, Pan Zhiyong, Chen Zilun, Ma Pengfei, Liu Wei, Yang Huan, Yan Zhiping, Wang Meng, Xi Xiaoming, Li Zhixian, Yang Baolai, Yang Linyong, Huang Liangjin, Huang Zhihe, Cao Jianqiu, Wang Xiaolin, Wang Zefeng, Chen Jinbao. 20 kW fiber laser with high beam quality enabled by tapered ytterbium-doped fiber[J]. High Power Laser and Particle Beams, 2024, 36(1): 011001. doi: 10.11884/HPLPB202436.230418
    [2]Xi Xiaoming, Yang Baolai, Zhang Hanwei, Pan Zhiyong, Huang Liangjin, Wang Peng, Yang Huan, Shi Chen, Yan Zhiping, Chen Zilun, Wang Xiaolin, Han Kai, Wang Zefeng, Zhou Pu, Xu Xiaojun. 20 kW monolithic fiber amplifier directly pumped by LDs[J]. High Power Laser and Particle Beams, 2023, 35(2): 021001. doi: 10.11884/HPLPB202335.220424
    [3]Liu Jiaqi, Zeng Lingfa, Shi Chen, Wu Hanshuo, Wang Peng, Xi Xiaoming, Zhang Hanwei, Wang Xiaolin, Xi Fengjie. A bidirectional output all-fiber laser oscillator with record output power of 8 kW[J]. High Power Laser and Particle Beams, 2023, 35(8): 081003. doi: 10.11884/HPLPB202335.230201
    [4]Gao Cong, Liu Nian, Li Fengyun, Liu Yu, Dai Jiangyun, Shen Changle, He Hongle, Lü Jiakun, Li Fang, Zhang Lihua, Li Yuwei, Jiang Lei, Guo Chao, Tao Rumao, Ke Weiwei, Zhang Haoyu, Wang Jianjun, Lin Honghuan, Jing Feng. 17.4 kW (1+1) long distance side-pumped laser fiber[J]. High Power Laser and Particle Beams, 2022, 34(5): 051002. doi: 10.11884/HPLPB202234.220070
    [5]Yang Baolai, Yang Huan, Ye Yun, Xi Xiaoming, Zhang Hanwei, Huang Liangjin, Wang Peng, Shi Chen, Wang Xiaolin, Yan Zhiping, Pan Zhiyong, Wang Zefeng, Zhou Pu, Xu Xiaojun, Chen Jinbao. 6 kW broadband fiber laser based on home-made ytterbium-doped fiber with gradually varying spindle-shape structure[J]. High Power Laser and Particle Beams, 2022, 34(8): 081001. doi: 10.11884/HPLPB202234.220220
    [6]Wang Peng, Xi Xiaoming, Zhang Hanwei, Yang Baolai, Shi Chen, Xiao Hu, Chen Zilun, Pan Zhiyong, Wang Xiaolin, Wang Zefeng, Zhou Pu, Xu Xiaojun, Chen Jinbao. Laser-diode-pumped fiber laser amplifier for 13 kW high-beam-quality output[J]. High Power Laser and Particle Beams, 2022, 34(12): 121001. doi: 10.11884/HPLPB202234.220247
    [7]Zhang Chun, Xie Lianghua, Chu Qiuhui, Liu Yu, Huang Shan, Song Huaqing, Wu Wenjie, Feng Xi, Li Min, Shen Benjian, Li Haokun, Tao Rumao, Xu Lixin, Wang Jianjun. Research progress of stimulated Raman scattering effect in high power fiber lasers[J]. High Power Laser and Particle Beams, 2022, 34(2): 021002. doi: 10.11884/HPLPB202234.210251
    [8]Wang Li, Wang Xiaoling, Zhang Hanwei, Chen Zilun, Xu Xiaojun. Theoretical study on transmission characteristics of stimulated Raman scattering in passive fiber with variable core radius[J]. High Power Laser and Particle Beams, 2021, 33(11): 111011. doi: 10.11884/HPLPB202133.210225
    [9]Xi Xiaoming, Zeng Lingfa, Zhang Hanwei, Wang Peng, Yang Baolai, Wang Xiaolin, Xu Xiaojun. 5 kW oscillating-amplifying integrated fiber laser with high reliability[J]. High Power Laser and Particle Beams, 2021, 33(7): 071001. doi: 10.11884/HPLPB202133.210245
    [10]Xiao Hu, Leng Jinyong, Zhang Hanwei, Huang Liangjin, Guo Shaofeng, Zhou Pu, Chen Jinbao. A 2.14 kW tandem pumped fiber amplifier[J]. High Power Laser and Particle Beams, 2015, 27(01): 010103. doi: 10.11884/HPLPB201527.010103
    [11]Du Wenbo, Wang Xiaolin, Zhu Jiajian, Zhou Pu, Xu Xiaojun, Shu Bohong. Suppression of stimulated Brillouin scattering effect in fiber amplifiers[J]. High Power Laser and Particle Beams, 2013, 25(03): 598-602. doi: 10.3788/HPLPB20132503.0598
    [12]Wang Hailin, Huang Weicun, Hong Xinhua. Mode field evolution in 1 550 nm single-mode tapered fiber[J]. High Power Laser and Particle Beams, 2012, 24(05): 1052-1056. doi: 10.3788/HPLPB20122405.1052
    [13]zhou pu, ma yanxing, wang xiaolin, ma haotong, xu xiaojun, liu zejin. Coherent beam combining of fiber amplifiers based on stimulated annealing algorithm[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- .
    [14]zhao zhen-yu, duan kai-liang, wang jian-ming, zhao wei, wang yi-shan. Experimental study of gain characteristics of high power photonic crystal fiber amplifier[J]. High Power Laser and Particle Beams, 2008, 20(12): 0- .
    [15]li jing-qin, pan wei, luo bin, zou xi-hua, zhang wei-li, zhou zhi. Stimulated Raman scattering and thermal stress in double clad fiber laser[J]. High Power Laser and Particle Beams, 2007, 19(12): 0- .
    [16]hou jing, xiao rui, jiang zong-fu, shu bo-hong, cheng jin-bao, liu ze-jin. Coherent beam combination of three ytterbium fiber amplifiers[J]. High Power Laser and Particle Beams, 2006, 18(10): 0- .
    [17]ding guang-lei, shen hua, yang ling-zhen, wang yi-shan, zhao wei, chen guo-fu. High repetition rate femtosecond Yb-doped fiber amplifier[J]. High Power Laser and Particle Beams, 2006, 18(06): 0- .
    [18]chen ji-xin, sui zhan, chen fu-shen, liu zhi-qiang, li ming-zhong, wang jian-jun, luo yi-ming. Stimulated Raman scattering and thermal effect in high power double clad fiber laser[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- .
    [19]shen hua, ding guang-lei, wang yi-shan, zhao wei. Experiment of cladding pumped femtosecond fiber amplifier[J]. High Power Laser and Particle Beams, 2005, 17(09): 0- .
    [20]ding guang-lei, shen hua, yang ling-zhen, zhao wei, chen guo-fu, duan zuo-liang, cheng zhao. ps fiber amplifier and gratings compressor[J]. High Power Laser and Particle Beams, 2005, 17(07): 0- .
  • Cited by

    Periodical cited type(5)

    1. 杨保来,王鹏,奚小明,马鹏飞,王小林,王泽锋. LD泵浦高平均功率、高光束质量掺镱光纤激光振荡器与放大器研究进展. 光学学报. 2023(17): 150-170 .
    2. 张志伦,林贤峰,李文臻,徐中巍,廖雷,陈瑰,褚应波,邢颍滨,李海清,彭景刚,戴能利,李进延. 低数值孔径部分掺杂纺锤形光纤实现4 kW近衍射极限激光输出. 中国激光. 2022(13): 173-176 .
    3. 奚小明,曾令筏,张汉伟,王鹏,杨保来,王小林,许晓军. 5 kW振荡放大一体化高可靠性光纤激光器. 强激光与粒子束. 2021(07): 45-47 . 本站查看
    4. 肖起榕,田佳丁,李丹,齐天澄,王泽晖,于伟龙,吴与伦,闫平,巩马理. 级联泵浦高功率掺镱光纤激光器:进展与展望. 中国激光. 2021(15): 66-86 .
    5. 王力,王小林,张汉伟,陈子伦,许晓军. 变纤芯直径传能光纤中受激拉曼散射传输特性的理论研究. 强激光与粒子束. 2021(11): 96-101 . 本站查看

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.1 %FULLTEXT: 23.1 %META: 70.4 %META: 70.4 %PDF: 6.5 %PDF: 6.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.2 %其他: 4.2 %其他: 1.3 %其他: 1.3 %Bradford: 0.3 %Bradford: 0.3 %China: 1.5 %China: 1.5 %India: 0.1 %India: 0.1 %Iran (ISLAMIC Republic Of): 0.1 %Iran (ISLAMIC Republic Of): 0.1 %Korea Republic of: 0.1 %Korea Republic of: 0.1 %Netherlands: 0.0 %Netherlands: 0.0 %Seattle: 0.0 %Seattle: 0.0 %Singapore: 0.1 %Singapore: 0.1 %Taichung: 0.1 %Taichung: 0.1 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %Turkey: 0.0 %Turkey: 0.0 %United States: 0.1 %United States: 0.1 %[]: 0.1 %[]: 0.1 %三明: 0.0 %三明: 0.0 %上海: 2.5 %上海: 2.5 %东京: 0.2 %东京: 0.2 %东莞: 0.0 %东莞: 0.0 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %乌兰察布: 0.0 %乌兰察布: 0.0 %亚特兰大: 0.0 %亚特兰大: 0.0 %京畿道: 0.2 %京畿道: 0.2 %佛山: 0.2 %佛山: 0.2 %保定: 0.1 %保定: 0.1 %六安: 0.0 %六安: 0.0 %兰州: 0.1 %兰州: 0.1 %北京: 7.6 %北京: 7.6 %华盛顿州: 0.0 %华盛顿州: 0.0 %南京: 0.5 %南京: 0.5 %南宁: 0.1 %南宁: 0.1 %南昌: 0.3 %南昌: 0.3 %台州: 0.3 %台州: 0.3 %台湾省: 0.1 %台湾省: 0.1 %合肥: 0.4 %合肥: 0.4 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %商丘: 0.0 %商丘: 0.0 %嘉兴: 0.0 %嘉兴: 0.0 %夏洛特: 0.1 %夏洛特: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.0 %大连: 0.0 %天津: 0.7 %天津: 0.7 %太原: 0.0 %太原: 0.0 %威海: 0.2 %威海: 0.2 %娄底: 0.0 %娄底: 0.0 %安卡拉: 0.2 %安卡拉: 0.2 %安大略: 0.1 %安大略: 0.1 %安顺: 0.1 %安顺: 0.1 %宣城: 0.3 %宣城: 0.3 %巴中: 0.0 %巴中: 0.0 %常州: 0.0 %常州: 0.0 %广元: 0.0 %广元: 0.0 %广州: 1.2 %广州: 1.2 %张家口: 0.8 %张家口: 0.8 %徐州: 0.1 %徐州: 0.1 %德克萨斯: 0.1 %德克萨斯: 0.1 %德州: 0.1 %德州: 0.1 %成都: 1.6 %成都: 1.6 %斯涅任斯克: 0.1 %斯涅任斯克: 0.1 %无锡: 0.1 %无锡: 0.1 %日照: 0.0 %日照: 0.0 %昆明: 0.3 %昆明: 0.3 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %杭州: 1.2 %杭州: 1.2 %梅州: 0.0 %梅州: 0.0 %武汉: 1.2 %武汉: 1.2 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.1 %济南: 0.1 %淄博: 0.0 %淄博: 0.0 %深圳: 1.8 %深圳: 1.8 %温州: 0.1 %温州: 0.1 %湖州: 0.3 %湖州: 0.3 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.1 %漯河: 0.1 %潍坊: 0.0 %潍坊: 0.0 %焦作: 0.0 %焦作: 0.0 %玉林: 0.0 %玉林: 0.0 %珠海: 0.1 %珠海: 0.1 %班加罗尔: 0.1 %班加罗尔: 0.1 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.3 %福州: 0.3 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 0.7 %绵阳: 0.7 %美国: 0.1 %美国: 0.1 %芒廷维尤: 19.0 %芒廷维尤: 19.0 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.0 %苏州: 0.0 %衡水: 0.2 %衡水: 0.2 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.1 %衢州: 0.1 %西宁: 36.8 %西宁: 36.8 %西安: 0.7 %西安: 0.7 %贵阳: 0.2 %贵阳: 0.2 %贺州: 0.0 %贺州: 0.0 %达州: 0.0 %达州: 0.0 %运城: 1.4 %运城: 1.4 %连云港: 0.0 %连云港: 0.0 %邯郸: 0.0 %邯郸: 0.0 %邵阳: 0.0 %邵阳: 0.0 %郑州: 0.1 %郑州: 0.1 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.1 %重庆: 0.1 %长春: 0.5 %长春: 0.5 %长沙: 3.3 %长沙: 3.3 %长沙市开福区: 0.0 %长沙市开福区: 0.0 %长治: 0.5 %长治: 0.5 %阿菲永卡拉希萨尔: 0.1 %阿菲永卡拉希萨尔: 0.1 %青岛: 0.4 %青岛: 0.4 %韦科: 0.1 %韦科: 0.1 %黄冈: 0.1 %黄冈: 0.1 %黑尔福德: 0.0 %黑尔福德: 0.0 %黔南: 0.1 %黔南: 0.1 %龙岩: 0.0 %龙岩: 0.0 %其他其他BradfordChinaIndiaIran (ISLAMIC Republic Of)Korea Republic ofNetherlandsSeattleSingaporeTaichungTaiwan, ChinaTurkeyUnited States[]三明上海东京东莞中山临汾乌兰察布亚特兰大京畿道佛山保定六安兰州北京华盛顿州南京南宁南昌台州台湾省合肥哈尔滨哥伦布商丘嘉兴夏洛特大庆大连天津太原威海娄底安卡拉安大略安顺宣城巴中常州广元广州张家口徐州德克萨斯德州成都斯涅任斯克无锡日照昆明晋城普洱杭州梅州武汉洛阳济南淄博深圳温州湖州湘潭漯河潍坊焦作玉林珠海班加罗尔石家庄福州绍兴绵阳美国芒廷维尤芝加哥苏州衡水衡阳衢州西宁西安贵阳贺州达州运城连云港邯郸邵阳郑州鄂州重庆长春长沙长沙市开福区长治阿菲永卡拉希萨尔青岛韦科黄冈黑尔福德黔南龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (1727) PDF downloads(97) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return