Zhang Manzhou, Wang Kun, Zhang Qinglei, et al. Compensations of double elliptical polarization undulator effects on the SSRF storage ring[J]. High Power Laser and Particle Beams, 2017, 29: 075103. doi: 10.11884/HPLPB201729.170014
Citation: Zhang Dongmin, Liao Cheng, Deng Xiaochuan, et al. Estimation of time-delay and direction of arrival in complex sea and land environment using parabolic equation method[J]. High Power Laser and Particle Beams, 2019, 31: 103211. doi: 10.11884/HPLPB201931.190230

Estimation of time-delay and direction of arrival in complex sea and land environment using parabolic equation method

doi: 10.11884/HPLPB201931.190230
  • Received Date: 2019-06-23
  • Rev Recd Date: 2019-07-07
  • Publish Date: 2019-10-15
  • Time-delay and direction of arrival are two important signal parameters in wireless positioning, radar detection, and target tracking applications. In this paper, a parabolic equation method is presented to simulate the propagation of pulse signals in the sea-to-land environment and to estimate the characteristic parameters of the signals considering irregular terrains and atmospheric refraction. A correlation function method is presented to extract the time-delay of the received signal from parabolic equation. Besides, a multiple signal classification algorithm is used to estimate the direction of arrival of signals, which provides a higher resolution compared with the traditional wave spectral method. Numerical examples are given to illustrate the correctness of the presented methods. Finally, with the presented methods, simulation experiments in a typical sea and land environment are presented to analyze the effects of evaporation duct on signal's delay and direction of arrival.
  • [1]
    白瑞杰, 廖成, 张青洪, 等. 复杂地理环境的图像分割及电波传播特性[J]. 强激光与粒子束, 2015, 27: 103214. doi: 10.11884/HPLPB201527.103214

    Bai Ruijie, Liao Cheng, Zhang Qinghong, et al. Image segmentation of complex geographical environment and wave propagation characteristics. High Power Laser and Particle Beams, 2015, 27: 103214 doi: 10.11884/HPLPB201527.103214
    [2]
    张青洪, 廖成, 李瀚宇, 等. 基于JASMIN框架的抛物方程有限差分解法并行计算及其应用[J]. 强激光与粒子束, 2015, 27: 083204. doi: 10.11884/HPLPB201527.083204

    Zhang Qinghong, Liao Cheng, Li Hanyu, et al. Parallel computing of finite difference algorithm for parabolic equation based on JASMIN and its application. High Power Laser and Particle Beams, 2015, 27: 083204 doi: 10.11884/HPLPB201527.083204
    [3]
    Marco A N, Silva, E C, Markurs L. Analysis of the effects of irregular terrain on radio wave propagation based on a three-dimensional parabolic equation[J]. IEEE Trans Antennas Propag, 2012, 60(4): 2138-2143. doi: 10.1109/TAP.2012.2186227
    [4]
    Leontovich M A, Fock V A. Solution of propagation of electromagnetic waves along the Earth's surface by the method of parabolic equations[J]. Journal of physics USSR, 1946, 10: 13-23.
    [5]
    Barrios A E. A terrain parabolic equation model for propagation in the troposphere[J]. IEEE Trans Antennas Propagat, 1994, 42(1): 90-98. doi: 10.1109/8.272306
    [6]
    Mikhailov M S, Malevich E S, Permyakovd V A. Modeling of radio-wave propagation in forest by the method of parabolic equation[J]. Int J Eng Technol, 2018, 7: 111-113.
    [7]
    Akbarpour R, Wsbster A R. Ray-tracing and parabolic equation methods in modeling of a tropospheric microwave link[J]. IEEE Trans Antennas Propagat, 2005, 53(11): 3785-3792. doi: 10.1109/TAP.2005.856355
    [8]
    Hardin R H, Tappert F D. Application of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equation[J]. Siam Rev, 1973, 15: 423-429.
    [9]
    Feng J, Zhou L, Xu X, et al. A hybrid TDPE/FDTD method for site-specific modeling of O2I radio wave propagation[J]. IEEE Antennas Wireless Propag Lett, 2018, 17(9): 1652-1655. doi: 10.1109/LAWP.2018.2861471
    [10]
    Wang D, Xi X, Zhou L, et al. Pulse parabolic equation method for Loran-C ASF prediction over irregular terrain[J]. IEEE Antennas Wireless Propag Lett, 2018, 17(1): 168-171. doi: 10.1109/LAWP.2017.2778736
    [11]
    Ergin D, Ozgur B A. Channel model for the surface ducts: Large-scale path-loss, delay spread, and AOA[J]. IEEE Trans Antenna Propag, 2015, 63(6): 2728-2738. doi: 10.1109/TAP.2015.2418788
    [12]
    Karimian A, Yardim C, Gerstoft P, et al. Multiple grazing angle sea clutter modeling[J]. IEEE Trans Antenna Propag, 2012, 60(9): 4408-4417. doi: 10.1109/TAP.2012.2207033
    [13]
    Ralph O S. Multiple emitter location and signal parameter estimation[J]. IEEE Trans Antenna Propag, 1986, 34(3): 276-280. doi: 10.1109/TAP.1986.1143830
    [14]
    Pillai S U, Kwon B H. Forward/backward spatial smoothing techniques for coherent signal identification[J]. IEEE Trans Acoust Speech Signal Process, 1989, 37(1): 8-15. doi: 10.1109/29.17496
    [15]
    Rogers L T, Hattan C P, Stapleton J K. Estimating evaporation duct heights from radar sea echo[J]. Radio Sci, 2000, 35(4): 955-966. doi: 10.1029/1999RS002275
  • Relative Articles

    [1]Li Bo, Li Yanmin, Zhao Juan, Li Hongtao, Ma Liehua, Ai Jie, Wang Cheng, Zhang Botao, Peng Xusheng, Li Tao. Design of the hardware automatic detection and control circuit for scintillation detectors[J]. High Power Laser and Particle Beams, 2025, 37(3): 015011. doi: 10.11884/HPLPB202537.240302
    [2]Zheng Xinzhi, Dou Shiji, Liu Xiang, Zhao Chenxi, Zhao Shilong, Yang Yue, Wang Shaoyi, Zhao Zongqing, Ma Yujie. Simulation of light field regulation based on micro-nano structure and material properties[J]. High Power Laser and Particle Beams, 2024, 36(3): 031002. doi: 10.11884/HPLPB202436.230453
    [3]Zhang Shulin, Zhu Guoli, Dong Guangyan. All-fiber mode-locked laser using platinum film-coated microfiber[J]. High Power Laser and Particle Beams, 2023, 35(3): 031002. doi: 10.11884/HPLPB202335.220263
    [4]Chen Yu, Guo Jielin, Zhong Hui, Sun Guanshu, Chen Zhiqiang, Jia Wei. Detection and location method of nanosecond pulse discharge ultraviolet fiber array[J]. High Power Laser and Particle Beams, 2021, 33(11): 115001. doi: 10.11884/HPLPB202133.210226
    [5]Hu Yun, Zhang Jiyan, Jiang Shaoen, Wang Zhebin, Pu Yudong. Experiment study of extended X-ray absorption fine structure spectrum on SG-III prototype facility[J]. High Power Laser and Particle Beams, 2020, 32(5): 052002. doi: 10.11884/HPLPB202032.200022
    [6]Wu Ya'nan, Mao Huafeng, Shen Xianshun, Li Jun, Lu Jing, Mao Zhiwei. Assessment method of thyristor controlled reactor dynamic response time based on trigger detection[J]. High Power Laser and Particle Beams, 2019, 31(5): 056001. doi: 10.11884/HPLPB201931.180362
    [7]Mo Jun, Feng Guoying, Liao Yu, Yang Mochou, Zhou Shouhuan. All-optical preferential absorption characteristics of graphene-coated microfiber composite waveguide[J]. High Power Laser and Particle Beams, 2018, 30(8): 081003. doi: 10.11884/HPLPB201830.180079
    [8]Fang Yu, Li Zefu, Luo Xuan, Chen Shufan, Huang Chuanqun, Zhang Qingjun. Microstructure controlling of low density PMP foam films[J]. High Power Laser and Particle Beams, 2014, 26(02): 022020. doi: 10.3788/HPLPB201426.022020
    [9]Liu Yong, Cheng Xiaofeng, Xu Jianqiu, Mu Quanquan, Wang Haiping. Effective cleanliness in large laser contaminants control[J]. High Power Laser and Particle Beams, 2014, 26(11): 111010. doi: 10.11884/HPLPB201426.111010
    [10]Miao Xinxiang, Yuan Xiaodong, Lv Haibing, Cheng Xiaofeng, Wei Zhengtong, Zhou Guorui. Contamination particles sensor based on microfiber[J]. High Power Laser and Particle Beams, 2014, 26(11): 114103. doi: 10.11884/HPLPB201426.114103
    [11]Cheng Xiaofeng, Wang Hongbin, Miao Xinxiang, Qin Lang, Ye Yayun, Chen Yuanbin, Lv Haibing, Xiong Qian, He Qun, Ma Zhiqiang, Zhao Longbiao, Liu Yong, He Shaobo, Yuan Xiaodong, Zhu Qihua, Jing Feng, Zheng Wanguo. Contamination control for high-power solid-state laser driver and improvement of cleanliness in slab amplifiers[J]. High Power Laser and Particle Beams, 2013, 25(05): 1147-1151. doi: 10.3788/HPLPB20132505.1147
    [12]Li Feifei, Wu Jin, Zhao ZhiLong, Wang DongLei, Ye Zhengyu, Yu Yanming. Air coupled vibration detection of all-fiber laser Doppler vibrometer[J]. High Power Laser and Particle Beams, 2012, 24(11): 2549-2554. doi: 10.3788/HPLPB20122411.2549
    [13]Li Jianyi, Xiao Wen, Pan Feng, Cong Lin, Wang Fanjing. Real-time micro-vibration testing based on digital holographic interferometry[J]. High Power Laser and Particle Beams, 2012, 24(10): 2291-2295. doi: 10.3788/HPLPB20122410.2291
    [14]zhang li, liu guodong, wang guibing. Influence of optical window shape on aero-optic effects[J]. High Power Laser and Particle Beams, 2010, 22(12): 0- .
    [15]zhang jun-wei, zhou hai, zhou yi, feng bin, wang shi-long, lin dong-hui, jing feng. Structure stability index allocation theory and measurement of laser prototype facility[J]. High Power Laser and Particle Beams, 2008, 20(07): 0- .
    [16]chen zhe-min, chen jun, sheng fang, chen guang-miao. 1 Hz~25 kHz repetition rate controllable microchip laser[J]. High Power Laser and Particle Beams, 2006, 18(03): 0- .
    [17]mu zhi-dong, wei qi-ying, ye shi-wang, zhang lei, wei wei, wang shu-kai. Extended analysis of fine-structure energy levels of 4s24p3 and 4s4p4 for ions from PdXIV to Cd XVI[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- .
    [18]wang xiao-dong, jiang ren-bin, zhang jun-, wang wan-jue, jiang xiao-feng, shen yi-fan. Fine-structure energy levels and radiation lifetime in Mglike ions Mn XIV and Zn XIX[J]. High Power Laser and Particle Beams, 2003, 15(09): 0- .
    [19]li guang-wu, ma hong-liang, li mao-sheng, zhang xue-mei, lu fu-quan, peng xian-jue, yang fu-jia. Hyperfine structure spectrum measurement for 159TbII[J]. High Power Laser and Particle Beams, 2002, 14(01): 0- .
  • Cited by

    Periodical cited type(1)

    1. 彭政伟,张胜海,苗劲松,陈文博,于洋,卫正统. 微纳光纤直径测试技术研究. 激光技术. 2021(05): 596-600 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.3 %FULLTEXT: 20.3 %META: 78.7 %META: 78.7 %PDF: 1.0 %PDF: 1.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.0 %其他: 4.0 %China: 0.8 %China: 0.8 %India: 0.1 %India: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.1 %United States: 0.1 %[]: 0.2 %[]: 0.2 %上海: 1.6 %上海: 1.6 %上饶: 0.1 %上饶: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %伊利诺伊州: 0.1 %伊利诺伊州: 0.1 %兰州: 0.2 %兰州: 0.2 %北京: 22.3 %北京: 22.3 %十堰: 0.1 %十堰: 0.1 %南京: 0.5 %南京: 0.5 %厦门: 0.1 %厦门: 0.1 %台州: 0.5 %台州: 0.5 %合肥: 0.1 %合肥: 0.1 %吉隆坡: 0.1 %吉隆坡: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.1 %唐山: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 0.1 %天津: 0.1 %威海: 0.1 %威海: 0.1 %宣城: 0.1 %宣城: 0.1 %布鲁塞尔: 0.1 %布鲁塞尔: 0.1 %常州: 0.1 %常州: 0.1 %广州: 0.3 %广州: 0.3 %张家口: 0.4 %张家口: 0.4 %扬州: 0.2 %扬州: 0.2 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.4 %杭州: 1.4 %武汉: 0.2 %武汉: 0.2 %法尔肯施泰因: 0.1 %法尔肯施泰因: 0.1 %洛阳: 0.1 %洛阳: 0.1 %深圳: 1.2 %深圳: 1.2 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %漯河: 0.4 %漯河: 0.4 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.3 %绵阳: 0.3 %芒廷维尤: 17.1 %芒廷维尤: 17.1 %芝加哥: 0.4 %芝加哥: 0.4 %衢州: 0.2 %衢州: 0.2 %西宁: 44.9 %西宁: 44.9 %西安: 0.2 %西安: 0.2 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.2 %运城: 0.2 %通辽: 0.1 %通辽: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.2 %郑州: 0.2 %长沙: 0.1 %长沙: 0.1 %长治: 0.1 %长治: 0.1 %阿什本: 0.3 %阿什本: 0.3 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %其他ChinaIndiaTaiwan, ChinaUnited States[]上海上饶中山临汾丹东伊利诺伊州兰州北京十堰南京厦门台州合肥吉隆坡呼和浩特哥伦布唐山嘉兴天津威海宣城布鲁塞尔常州广州张家口扬州晋城普洱杭州武汉法尔肯施泰因洛阳深圳温州湖州漯河石家庄福州秦皇岛绵阳芒廷维尤芝加哥衢州西宁西安贵阳运城通辽邯郸郑州长沙长治阿什本香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (950) PDF downloads(46) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return