Volume 31 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
Hu Xiaofeng, Zhang Jianping, Xu Bin. Progress of the research of space electrostatic effect of spacecraft[J]. High Power Laser and Particle Beams, 2019, 31: 103202. doi: 10.11884/HPLPB201931.190247
Citation: Hu Xiaofeng, Zhang Jianping, Xu Bin. Progress of the research of space electrostatic effect of spacecraft[J]. High Power Laser and Particle Beams, 2019, 31: 103202. doi: 10.11884/HPLPB201931.190247

Progress of the research of space electrostatic effect of spacecraft

doi: 10.11884/HPLPB201931.190247
  • Received Date: 2019-06-30
  • Rev Recd Date: 2019-07-16
  • Publish Date: 2019-10-15
  • The space environment in which the spacecraft located in orbit is complex and changeable. Environmental factors such as high-energy electrons, plasma environment, low pressure, large temperature difference and so on can cause electrostatic charge-discharge effects on the spacecrafts, which seriously affects the safety of the spacecraft. Based on the experimental data and cases at home and abroad, this paper analyzes the spacecraft faults caused by the space environment, introduces the research progress of the effect on spacecraft electrostatic charging-discharging in the space environment from the aspects of numerical simulation software, ground analogy technology, strong electromagnetic field induced discharging and protection technology. It finally presents prospects of the research gap and future research direction in China. The research indicates that progress has been made in the research of spacecraft charge-discharge effect protection technology in China. The next step is to focus on new tasks such as space station, deep space exploration and lunar exploration, and further expand the research on the mechanism of spacecraft charge-discharge effect and new protection technologies under space environment, so as to provide technical support for improving the safety and reliability of spacecraft in China.
  • loading
  • [1]
    空间科学和技术综合专题组. 2020年中国空间科学和技术发展研究[C]//2020年中国科学和技术发展研究暨科学家讨论会论文集. 2004: 384-432.

    Comprehensive Thematic Group on Space Science and Technology. China's research on space science and technology development in 2020//China's Symposium on Science and Technology Development and Scientists in 2020. 2004: 384-432
    [2]
    许滨, 武占成, 郝永锋, 等. 航天器在轨空间环境研究[J]. 河北科技大学学报, 2011, 32(s2): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQJ2011S2003.htm

    Xu Bin, Wu Zhancheng, Hao Yongfeng, et al. Spacecraft on-orbit space environment research. Journal of Hebei University of Science and Technology, 2011, 32(s2): 9-14 https://www.cnki.com.cn/Article/CJFDTOTAL-HBQJ2011S2003.htm
    [3]
    薛梅. 高压砷化镓太阳阵ESD效应及防护技术研究[D]. 天津: 天津大学, 2007.

    Xue Mei. Study on ESD effect and protection technology of high-voltage gallium arsenide solar array. Tianjin: Tianjin University, 2007
    [4]
    赵雪, 蔡震波. 空间环境及效应对在轨航天器的影响分析[C]//第六届空间物理专业委员会全体会议暨空间环境研究预报专题研讨会. 2004.

    Zhao Xue, Cai Zhenbo. The impact of space environment and effectiveness on on-orbit spacecraft//Sixth Plenary Session of the Special Committee on Space Physics and Symposium on Space Environment Research and Forecast. 2004
    [5]
    刘尚合, 魏光辉, 刘直承, 等. 静电理论与防护[M]. 北京: 兵器工业出版社, 1999.

    Liu Shanghe, Wei Guanghui, Liu Zhicheng, et al. Electrostatic theory and protection. Beijing: Weapons Industry Press, 1999
    [6]
    杜春普. 静电危害与防护[J]. 惯导与仪表, 2001(2): 38-48. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201103017.htm

    Du Chunpu. Electrostatic hazards and protection. Inertial Navigation and Instrumentation, 2001(2): 38-48 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201103017.htm
    [7]
    庞永江, 徐跃民. 地面实验室模拟空间等离子体环境的初步测试[J]. 空间科学学报, 2001, 21(3): 259-265. https://www.cnki.com.cn/Article/CJFDTOTAL-KJKB200103008.htm

    Pang Yongjiang, Xu Yuemin. Preliminary test of simulated space plasma environment in ground laboratory. Journal of Space Science, 2001, 21(3): 259-265 https://www.cnki.com.cn/Article/CJFDTOTAL-KJKB200103008.htm
    [8]
    黄本诚, 童靖宇. 空间环境工程学[M]. 北京: 中国科学技术出版社, 2010.

    Huang Bencheng, Tong Jingyu. Space environmental engineering. Beijing: China Science and Technology Press, 2010
    [9]
    庞永江. 地面实验室模拟空间等离子体环境及太阳能电池片效应初步实验研究[D]. 北京: 中国科学院空间科学与应用研究中心, 2001.

    Pang Yongjiang. Preliminary experimental study on simulated space plasma environment and solar cell effect in ground laboratory. Beijing: Center for Space Science and Application, Chinese Academy of Sciences, 2001
    [10]
    Finckenor M M, Kamenetzky R R, Vaughn J A, et al. Space environmental effects testing in support of the international space station[C]//38th AIAA Aerospace Sciences Meeting and Exhibit. 2001.
    [11]
    Wilkes D R, Zwiener J M. Science data report for the Optical Properties Monitor (OPM) experiment[R]. NASA CR-2001-210881.
    [12]
    Prebola J L, Bertrand W T, Crider D H, et al. Development of a combined space environment test facility at AEDC[R]. Aerospace Testing, 2006.
    [13]
    师立勤. 低轨道航空器辐射环境和表面充电效应研究[D]. 北京: 中国科学技术大学, 2011.

    Shi Liqin. Study on the radiation environment and surface charging effect of low orbit aircraft. Beijing: China University of Science and Technology, 2011
    [14]
    Okumura T, Mashidori H, Takahashi M, et al. Temperature effect on primary discharge under simulated space plasma environment[J]. IEEE Trans Plasma Science, 2012, 40(2): 345-350. doi: 10.1109/TPS.2011.2173214
    [15]
    Katz I, Cassidy J J, Mandell M J, et al. The capabilities of the NASA charging analyzer program[J]. Spacecraft Charging Technol, 1978, 10: 101-122.
    [16]
    Mandell M J, Davis V A, Cooke D L, et al. Nascap-2K spacecraft charging code overview[J]. IEEE Trans Plasma Science, 2006, 34(5): 2084-2093. doi: 10.1109/TPS.2006.881934
    [17]
    Roussel J F, Rogier F, Dufour G, et al. SPIS open-source code: Methods, capabilities, achievements, and prospects[J]. IEEE Trans Plasma Science, 2008, 36(5): 2360-2368. doi: 10.1109/TPS.2008.2002327
    [18]
    Muranaka T, Hosoda S, Kim J H, et al. Development of multi-utility spacecraft charging analysis tool[J]. IEEE Trans Plasma Science, 2008, 36(5): 2336-2349. doi: 10.1109/TPS.2008.2003974
    [19]
    Roeder J L, Fennell J F. Differential charging of satellite surface materials[J]. IEEE Trans Plasma Science, 2009, 37(1): 281-289. doi: 10.1109/TPS.2008.2004765
    [20]
    吴中华, 古士芬, 臧振群, 等. 航天器表面充电效应及其工程计算[J]. 环模技术, 1999(2): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HTHJ199902001.htm

    Wu Zhonghua, Gu Shifen, Zang Zhenqun, et al. Surface charging effect of spacecraft and its engineering calculation. Ring-Mode Technology, 1999(2): 9-13 https://www.cnki.com.cn/Article/CJFDTOTAL-HTHJ199902001.htm
    [21]
    李丹明, 陈学康. 空间环境效应与防护技术研究现状与发展设想[J]. 航天器环境工程, 2008, 25(3): 224-228. https://www.cnki.com.cn/Article/CJFDTOTAL-HTHJ200803013.htm

    Li Danming, Chen Xuekang. Research status and development assumption of space environmental effects and protection technology. Spacecraft Environmental Engineering, 2008, 25(3): 224-228 https://www.cnki.com.cn/Article/CJFDTOTAL-HTHJ200803013.htm
    [22]
    闫德奎. 大幅照面电子枪模拟空间地磁亚暴环境的方法研究[D]. 武汉: 武汉大学, 2005.

    Yan Dekui. Method of simulating space geomagnetic sub-storm environment with large-scale illumination electron gun. Wuhan: Wuhan University, 2005
    [23]
    NASA. Avoiding problems caused by spacecraft on-orbit interal charging effects[R]. NASA-Hdbk-4002, 1999.
    [24]
    原青云, 孙永卫, 张希军, 等. 航天器带电理论及防护[M]. 北京: 国防工业出版社, 2016.

    Yuan Qingyun, Sun Yongwei, Zhang Xijun, et al. Spacecraft charging theory and protection. Beijing: National Defense Industry Press, 2016
    [25]
    王立, 秦晓刚. 空间材料二次电子发射特性测试[J]. 真空与低温, 2002, 8(1): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW200201003.htm

    Wang Li, Qin Xiaogang. Measurement of secondary electron emission characteristics of space materials. Vacuum and Low Temperature, 2002, 8(1): 18-21 https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW200201003.htm
    [26]
    Kiefer R L, Orwoll R A. Shielding materials for highly penetrating space radiations[R]. NASA-CR-199720.
    [27]
    Hoang B, Wong F K, Corey R L, et al. Combined space environmental exposure test of multijunction GaAs/Ge solar array coupons[J]. IEEE Trans Plasma Science, 2012, 40(2): 324-333.
    [28]
    Purvis C K, Garrett A H B, Whittlesey C. Design guidelines for assessing and controlling spacecraft charging effects[R]. NASA TP-2361.
    [29]
    Boscher D, Bourdarie S, et al. A new model for electrons fluxes in GEO[C]//54th International Astronautical Congress of the International Astronautical Federation. 2003.
    [30]
    Fukushige S, Akahoshi Y, Watanabe K, et al. Solar-array arcing due to plasma created by space-debris impact[J]. IEEE Trans Plasma Science, 2008, 36(5): 2434-2439.
    [31]
    Katz I, Davis V A, Snyder D B, et al. Mechanism for spacecraft charging initiated destruction of solar arrays in GEO[R]. AIAA Paper, 1998.
    [32]
    Rodgers D. Spacecraft plasma interaction guidelines and handbook[R]. European Space Agency, 2004.
    [33]
    Olsen R C. Record charging events from Applied Technology Satellite 6[J]. Journal of Spacecraft and Rockets, 1987, 24(4): 362-366.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article views (1892) PDF downloads(134) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return