Volume 32 Issue 4
Mar.  2020
Turn off MathJax
Article Contents
Wei Huiling, Cao Jianyong, Yu Peixuan, et al. Development of ion source discharge chamber for the 5 MW neutral beam heating line on HL-2M device[J]. High Power Laser and Particle Beams, 2020, 32: 046001. doi: 10.11884/HPLPB202032.190275
Citation: Wei Huiling, Cao Jianyong, Yu Peixuan, et al. Development of ion source discharge chamber for the 5 MW neutral beam heating line on HL-2M device[J]. High Power Laser and Particle Beams, 2020, 32: 046001. doi: 10.11884/HPLPB202032.190275

Development of ion source discharge chamber for the 5 MW neutral beam heating line on HL-2M device

doi: 10.11884/HPLPB202032.190275
  • Received Date: 2019-07-24
  • Rev Recd Date: 2019-12-17
  • Publish Date: 2020-03-06
  • To construct a 5 MW neutral beam heating beamline for HL-2M device, the development of the discharge chamber of the hot cathode arc discharge ion source for neutral beam heating was carried out. The neutral beamline contains four sets of 80 kV/45 A/5 s ion sources, and the discharge chamber design index is 850 A/5 s. Firstly, the electromagnetic studio in CST software was used to simulate the cusp magnetic field of the discharge chamber with specific geometric structure, and the cusp magnetic field distribution was obtained, which verified the rationality of cusp magnetic field layout. To solve the problems in the process of the discharge chamber and the localized arcing in the experiment, the structure of the discharge chamber was improved. The side wall of the discharge chamber changed from 40 rows of cusp magnets to 7 rings of cusp magnets, the cathode structure changed from the filament plate structure to the ceramic kovar structure, and a ceramic shield was added between the discharge chamber and the accelerator. Normal arc discharge was obtained in both the cathode plate discharge chamber and the cathode ceramic kovar discharge chamber. The final shaped discharge chamber adopted 7-ring cusp magnets and ceramic kovar cathode structure. The arc discharge index of the 5 MW neutral beamline ion source was achieved in the final shaped discharge chamber. The arc discharge time was close to 5 s, and the maximum arc discharge current reached 1 000 A.
  • loading
  • [1]
    Kadomtsev B B, Troyon F S, Watkins M L, et al. Tokamaks[J]. Nuclear Fusion, 1990, 30(9): 1675. doi: 10.1088/0029-5515/30/9/003
    [2]
    Duesing G, Altmann H, Falter H, et al. Neutral beam injection system[J]. Fusion Technology, 1987, 11(1): 163-202. doi: 10.13182/FST87-A25004
    [3]
    Fujita T. High-performance experiments towards steady-state operation in JT-60U[J]. Plasma Physics and Controlled Fusion, 1997, 39, B75.
    [4]
    Okumura Y, Fujiwara Y, Inoue T, et al. High power negative ion sources for fusion at the Japan Atomic Energy Research Institute[J]. Review of Scientific Instrument, 1996, 67(3): 1092-1097. doi: 10.1063/1.1146766
    [5]
    Cao Jianyong, Wei Huiling, Liu He, et al. Empirical scaling law of neutral beam injection power in HL-2A tokamak[J]. Chinese Physics Letters, 2015, 32: 052902. doi: 10.1088/0256-307X/32/5/052902
    [6]
    Cao J Y, Wei H L, Zou G Q, et al. Conceptual design of 5MW-NBI injector for HL-2M tokamak[J]. Fusion Engineering and Design, 2013, 88: 872-877. doi: 10.1016/j.fusengdes.2013.03.034
    [7]
    Liu H, Cao J Y, Wei H L, et al. The latest progress of the 1st NBI beamline on HL-2M Tokamak[J]. Fusion Engineering and Design, 2017, 123: 448-452. doi: 10.1016/j.fusengdes.2017.02.109
    [8]
    Wei H L, Cao J Y, Rao J, et al. The dependence of extracted current on discharge gas pressure in neutral beam ion sources on HL-2A tokamak[J]. Review of Scientific Instruments, 2012, 83: 023302. doi: 10.1063/1.3681446
    [9]
    Hu C D, Xu Y J, Xie Y H, et al. The recent development of the EAST neutral beam injector[J]. Chinese Physics Letter, 2015, 32: 052901. doi: 10.1088/0256-307X/32/5/052901
    [10]
    Xu Y J, Hu C D, Liu S, et al. Preliminary experimental study of ion beam extraction of EAST neutral beam injector[J]. Chinese Physics Letter, 2012, 29: 035201. doi: 10.1088/0256-307X/29/3/035201
    [11]
    Chen W, Yu L M, Ding X T, et al. Core-localized Alfvénic modes driven by energetic ions in HL-2A NBI plasmas with weak magnetic shears[J]. Nuclear Fusion, 2016, 56: 036018. doi: 10.1088/0029-5515/56/3/036018
    [12]
    Chen W, Ding X T, Yu L M, et al. Observation of energetic-particle-induced GAM and nonlinear interactions between EGAM BAEs and tearing modes on the HL-2A tokamak[J]. Nuclear Fusion, 2013, 53: 113010. doi: 10.1088/0029-5515/53/11/113010
    [13]
    曹建勇, 魏会领, 刘鹤, 等. HL-2M装置中性束注入加热系统研制进展[J]. 强激光与粒子束, 2018, 30:106001. (Cao Jianyong, Wei Huiling, Liu He, et al. Latest progress of development of the neutral beam injection heating system on HL-2M Tokamak[J]. High Power Laser and Particle Beams, 2018, 30: 106001
    [14]
    魏会领, 曹建勇. 一种离子源放电室内夹紧螺母灯丝支架的屏蔽结构: CN106935472B[P]. 2018-11-30.

    Wei Huiling, Cao Jianyong. Shielding structure for filament support adopting clamping nuts in ion source discharge chamber: CN106935472B[P]. 2018-11-30
    [15]
    魏会领, 曹建勇. 一种离子源放电室阴极灯丝杆的连接和冷却结构: CN106935460B[P]. 2018-09-28.

    Wei Huiling, Cao Jianyong. Ion source discharge chamber cathode filament rod connection and cooling structure: CN106935460B[P]. 2018-09-28
    [16]
    魏会领, 曹建勇. 一种离子源放电室与加速器之间的陶瓷屏蔽结构: CN106935471B[P]. 2018-11-30.

    Wei Huiling, Cao Jianyong. Ceramic shielding structure between ion source discharge chamber and accelerator: CN106935471B[P]. 2018-11-30
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (1146) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return