Volume 32 Issue 4
Mar.  2020
Turn off MathJax
Article Contents
Yang Jisen, Pan Weimin, Wang Honglei, et al. Digital self-excited vertical test system of superconducting cavity[J]. High Power Laser and Particle Beams, 2020, 32: 045106. doi: 10.11884/HPLPB202032.190320
Citation: Yang Jisen, Pan Weimin, Wang Honglei, et al. Digital self-excited vertical test system of superconducting cavity[J]. High Power Laser and Particle Beams, 2020, 32: 045106. doi: 10.11884/HPLPB202032.190320

Digital self-excited vertical test system of superconducting cavity

doi: 10.11884/HPLPB202032.190320
  • Received Date: 2019-08-28
  • Rev Recd Date: 2019-12-12
  • Publish Date: 2020-03-06
  • Vertical test is an important method for characterizing the performance of superconducting cavities. We designed an superconducting cavity vertical test system based on digital self-excited algorithm and the technology of low-level radio frequency, which could improve the vertical test efficiency of superconducting cavities. The RF front-end and clock distribution system of the vertical test system adopts the second up-and-down conversion scheme. To some extent, the working frequency of the digital self-excited loop of the vertical test system can be set flexibly, and the working bandwidth of the test system is increased. The test results of the pass-band frequency of the 1.3 GHz 9-cell superconducting cavity show that the vertical test system has strong frequency resolution (<800 kHz) to ensure the smooth progress of the multi-cell superconducting cavity pass-band test.

  • loading
  • [1]
    Powers T. Theory and practice of cavity RF test system[C]//Proceedings of the 12th International Workshop on RF Superconductivity. 2005: 40-70.
    [2]
    Delayen J R. Phase and amplitude stabilization of superconducting resonators[D]. California: California Institute of Technology, 1978: 1-16.
    [3]
    Allison T, Delayen J R, Hovater C, et al. A digital self excited loop for accelerating cavity field control[C]//Proceedings of PAC07. 2007: 2481-2483.
    [4]
    Goryashko V A, Bhattacharyya A K, Li Han, et al. A method for high-precision characterization of the Q-slope of superconducting RF cavities[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(11): 3764-3771. doi: 10.1109/TMTT.2016.2605671
    [5]
    Nicander H. Electro-acoustic stability of a superconducting spoke cavity[D]. Sweden: Uppsala University, 2015: 31-37.
    [6]
    张娟, 戴建枰, 黄泓, 等. 基于Labview 的超导腔测试数据采集系统[J]. 核电子学与探测技术, 2013, 33(9):1098-1103. (Zhang Juan, Dai Jianping, Huang Hong, et al. Data acquisition system of superconducting cavity test based on Labview[J]. Nuclear Electronics & Detection Technology, 2013, 33(9): 1098-1103 doi: 10.3969/j.issn.0258-0934.2013.09.014
    [7]
    常玮. 低beta超导腔体的测试研究[D]. 兰州: 中国科学院近代物理研究所, 2014: 62-68.

    Chang Wei. Research on low beta superconducting cavity testing[D]. Lanzhou: Institute of Modern Physics, Chinese Academy of Sciences, 2014: 62-68
    [8]
    邱丰. 1.3 GHz 9-cell腔数字化低电平系统的研究[D]. 北京: 中国科学院高能物理研究所, 2012: 76-77.

    Qiu Feng. Study on the digital low level RF control system of 1.3 GHz nine-cell cavity[D]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2012: 76-77
    [9]
    张志刚. 同步辐射光源增强其高频数字化低电平系统研制[D]. 上海: 中国科学院 上海应用物理研究所, 2015: 68-72.

    Zhang Zhigang. Development of digital low level RF system for booster at Synchrotron Radiation Light Source[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2015: 68-72
    [10]
    Holzbauer J P, Pischalnikov Y, Sergatskov D A, et al. Systematic uncertainties in RF-based measurement of superconducting cavity quality factors[J]. Nuclear Instruments and Methods in Physics Research A, 2016, 830: 22-29. doi: 10.1016/j.nima.2016.05.025
    [11]
    Holzbauer J P, Contreras C, Pischalnikov Y, et al. Improved RF measurements of SRF cavity quality factors[J]. Nuclear Instruments and Methods in Physics Research A, 2019, 913: 7-14. doi: 10.1016/j.nima.2018.09.155
    [12]
    刘亚萍. BEPCII 500 MHz 铌腔的研制[D]. 北京: 中国科学院高能物理研究所, 2011: 94-95.

    Liu Yaping. Study of BEPCII 500 MHz niobium cavity[D]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2011: 94-95
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (1763) PDF downloads(127) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return