Volume 32 Issue 4
Mar.  2020
Turn off MathJax
Article Contents
Wu Min’gan, Liu Yi, Lin Fuchang, et al. Characteristics analysis of electrohydraulic shockwave[J]. High Power Laser and Particle Beams, 2020, 32: 045002. doi: 10.11884/HPLPB202032.190356
Citation: Wu Min’gan, Liu Yi, Lin Fuchang, et al. Characteristics analysis of electrohydraulic shockwave[J]. High Power Laser and Particle Beams, 2020, 32: 045002. doi: 10.11884/HPLPB202032.190356

Characteristics analysis of electrohydraulic shockwave

doi: 10.11884/HPLPB202032.190356
  • Received Date: 2019-09-16
  • Rev Recd Date: 2019-12-04
  • Publish Date: 2020-03-06
  • Characteristics of electrohydraulic shockwave are the keys to the application of electrohydraulic disintegration of rocks (EHDR). Mathematical models are used to characterize the generation and propagation of the shockwave, an integrated experimental platform is established, the measured and simulated results of typical shockwave characteristics are analyzed. The simulated results of characteristics of shockwaves under different charge voltage are given, and the influence of charge voltage on the shockwave characteristics are analyzed. The results show that the peak pressure and energy of shockwave is 2.67 MPa and 27.30 J respectively, the wave front time is 2.16 μs, the loading rate is 1.24 MPa/μs, when the charge voltage is 11 kV. The peak value and energy of shockwaves increase, the wave front time decreases, the loading rate of shockwaves increases, while the efficiency of electrical energy transfer into shockwave energy decreases, when the charge voltage of capacitor rises. Characteristics of shockwaves can be predicted from the parameters of discharge circuit via simulation, thus to provide theoretical basis for further study on the morphology and effect of EHDR.

  • loading
  • [1]
    张瑞强, 刘少军, 胡琼. 利用脉冲功率技术开采海底富钴结壳的试验研究[J]. 强激光与粒子束, 2017, 29:065008. (Zhang Ruiqiang, Liu Shaojun, Hu Qiong. Experimental investigation of exploring marine co-rich crust using pulse power techniques[J]. High Power Laser and Particle Beams, 2017, 29: 065008
    [2]
    付荣耀, 孙鹞鸿, 樊爱龙, 等. 高压电脉冲在页岩气开采中的压裂实验研究[J]. 强激光与粒子束, 2016, 28:079001. (Fu Rongyao, Sun Yaohong, Fan Ailong, et al. Research of rock fracturing based on high voltage pulse in shale gas drilling[J]. High Power Laser and Particle Beams, 2016, 28: 079001
    [3]
    施逢年. 矿石的高压电脉冲预处理技术研究进展——昆士兰大学JK矿物中心10余年成果回顾[J]. 金属矿山, 2019(5):1-8. (Shi Fengnian. Progress on high voltage pulse technology used for ore pre-treatment——Overview of the research outcomes made by the Julius Kruttschnitt Mineral Research Centre of the University of Queensland in the past 10 years[J]. Metal Mine, 2019(5): 1-8
    [4]
    李昌平, 契霍特金 V F, 段隆臣. 电脉冲破岩钻进技术研究进展[J]. 地质科技情报, 2018, 37(6):298-304. (Li Changping, Chikhotkin V F, Duan Longcheng. Research progress of electro pulse boring rock breaking technology[J]. Geological Science and Technology Information, 2018, 37(6): 298-304
    [5]
    付荣耀, 孙鹞鸿, 刘坤, 等. 大水泥岩样的电脉冲压裂实验研究[J]. 强激光与粒子束, 2018, 30:045007. (Fu Rongyao, Sun Yaohong, Liu Kun, et al. Experimental study of fracturing under electric pulse for large cement sample[J]. High Power Laser and Particle Beams, 2018, 30: 045007
    [6]
    张永民, 邱爱慈, 秦勇. 电脉冲可控冲击波煤储层增透原理与工程实践[J]. 煤炭科学技术, 2017, 45(9):79-85. (Zhang Yongmin, Qiu Aici, Qin Yong. Principle and engineering practices on coal reservoir permeability improved with electric pulse controllable shock waves[J]. Coal Science and Technology, 2017, 45(9): 79-85
    [7]
    Martin E A. Experimental investigation of a high-energy density, high-pressure arc plasma[J]. Journal of Applied Physics, 1960, 31(2): 255-267. doi: 10.1063/1.1735555
    [8]
    Sun B, Kunitomo S, Igarashi C. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water[J]. Journal of Physics D: Applied Physics, 2006, 39(17): 3814-3820. doi: 10.1088/0022-3727/39/17/016
    [9]
    Timoshkin I V, Fouracre R A, Given M J, et al. Hydrodynamic modelling of transient cavities in fluids generated by high voltage spark discharges[J]. Journal of Physics D: Applied Physics, 2006, 39(22): 4808-4817. doi: 10.1088/0022-3727/39/22/011
    [10]
    Axel W H K. Pulsed power discharges in water[D]. California: California Institute of Technology, 1996.
    [11]
    Liu S W, Liu Y, Lin F C, et al. Influence of plasma channel impedance model on electrohydraulic shockwave simulation[J]. Physics of Plasmas, 2019, 26: 023522. doi: 10.1063/1.5064847
    [12]
    王一博. 水中等离子体声源的理论与实验研究[D]. 长沙: 国防科技大学, 2012.

    Wang Yibo. Theoretical and experimental study of the underwater plasma acoustic source[D]. Changsha: Graduate School of National University of Defense Technology, 2012
    [13]
    贾少华, 赵金昌, 尹志强, 等. 基于高压电脉冲煤体增透的水激波波前时间变化规律研究[J]. 太原理工大学学报, 2015, 46(6):680-684, 690. (Jia Shaohua, Zhao Jinchang, Yin Zhiqiang, et al. Research on change laws of front time in water shock-wave based on pulsed high-voltage discharge in permeability enhancement in coal seams[J]. Journal of Taiyuan University of Technology, 2015, 46(6): 680-684, 690
    [14]
    尹志强, 赵金昌, 贾少华, 等. 基于高压电脉冲的水激波加载特性的实验研究[J]. 煤炭技术, 2016, 35(6):182-185. (Yin Zhiqiang, Zhao Jinchang, Jia Shaohua, et al. Experimental study of water shock load characteristics based on high-voltage pulsed discharge[J]. Coal Technology, 2016, 35(6): 182-185
    [15]
    李显东, 刘毅, 李志远, 等. 不均匀电场下水中脉冲放电观测及沉积能量对激波的影响[J]. 中国电机工程学报, 2017, 37(10):3028-3036. (Li Xiandong, Liu Yi, Li Zhiyuan, et al. Observation of underwater pulse discharge and influence of deposited energy on shock wave in non-uniform electric field[J]. Proceedings of CSEE, 2017, 37(10): 3028-3036
    [16]
    Li C, Duan L, Tan S, et al. Damage model and numerical experiment of high-voltage electro pulse boring in granite[J]. Energies, 2019, 12(4): 727. doi: 10.3390/en12040727
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (1514) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return