Gao Lei, Zeng Yonghu, Wang Liandong, et al. Application strategy for intermittent sampling repeater jamming to wideband imaging radar[J]. High Power Laser and Particle Beams, 2018, 30: 053203. doi: 10.11884/HPLPB201830.170430
Citation: Wu Min’gan, Liu Yi, Lin Fuchang, et al. Characteristics analysis of electrohydraulic shockwave[J]. High Power Laser and Particle Beams, 2020, 32: 045002. doi: 10.11884/HPLPB202032.190356

Characteristics analysis of electrohydraulic shockwave

doi: 10.11884/HPLPB202032.190356
  • Received Date: 2019-09-16
  • Rev Recd Date: 2019-12-04
  • Publish Date: 2020-03-06
  • Characteristics of electrohydraulic shockwave are the keys to the application of electrohydraulic disintegration of rocks (EHDR). Mathematical models are used to characterize the generation and propagation of the shockwave, an integrated experimental platform is established, the measured and simulated results of typical shockwave characteristics are analyzed. The simulated results of characteristics of shockwaves under different charge voltage are given, and the influence of charge voltage on the shockwave characteristics are analyzed. The results show that the peak pressure and energy of shockwave is 2.67 MPa and 27.30 J respectively, the wave front time is 2.16 μs, the loading rate is 1.24 MPa/μs, when the charge voltage is 11 kV. The peak value and energy of shockwaves increase, the wave front time decreases, the loading rate of shockwaves increases, while the efficiency of electrical energy transfer into shockwave energy decreases, when the charge voltage of capacitor rises. Characteristics of shockwaves can be predicted from the parameters of discharge circuit via simulation, thus to provide theoretical basis for further study on the morphology and effect of EHDR.

  • [1]
    张瑞强, 刘少军, 胡琼. 利用脉冲功率技术开采海底富钴结壳的试验研究[J]. 强激光与粒子束, 2017, 29:065008. (Zhang Ruiqiang, Liu Shaojun, Hu Qiong. Experimental investigation of exploring marine co-rich crust using pulse power techniques[J]. High Power Laser and Particle Beams, 2017, 29: 065008
    [2]
    付荣耀, 孙鹞鸿, 樊爱龙, 等. 高压电脉冲在页岩气开采中的压裂实验研究[J]. 强激光与粒子束, 2016, 28:079001. (Fu Rongyao, Sun Yaohong, Fan Ailong, et al. Research of rock fracturing based on high voltage pulse in shale gas drilling[J]. High Power Laser and Particle Beams, 2016, 28: 079001
    [3]
    施逢年. 矿石的高压电脉冲预处理技术研究进展——昆士兰大学JK矿物中心10余年成果回顾[J]. 金属矿山, 2019(5):1-8. (Shi Fengnian. Progress on high voltage pulse technology used for ore pre-treatment——Overview of the research outcomes made by the Julius Kruttschnitt Mineral Research Centre of the University of Queensland in the past 10 years[J]. Metal Mine, 2019(5): 1-8
    [4]
    李昌平, 契霍特金 V F, 段隆臣. 电脉冲破岩钻进技术研究进展[J]. 地质科技情报, 2018, 37(6):298-304. (Li Changping, Chikhotkin V F, Duan Longcheng. Research progress of electro pulse boring rock breaking technology[J]. Geological Science and Technology Information, 2018, 37(6): 298-304
    [5]
    付荣耀, 孙鹞鸿, 刘坤, 等. 大水泥岩样的电脉冲压裂实验研究[J]. 强激光与粒子束, 2018, 30:045007. (Fu Rongyao, Sun Yaohong, Liu Kun, et al. Experimental study of fracturing under electric pulse for large cement sample[J]. High Power Laser and Particle Beams, 2018, 30: 045007
    [6]
    张永民, 邱爱慈, 秦勇. 电脉冲可控冲击波煤储层增透原理与工程实践[J]. 煤炭科学技术, 2017, 45(9):79-85. (Zhang Yongmin, Qiu Aici, Qin Yong. Principle and engineering practices on coal reservoir permeability improved with electric pulse controllable shock waves[J]. Coal Science and Technology, 2017, 45(9): 79-85
    [7]
    Martin E A. Experimental investigation of a high-energy density, high-pressure arc plasma[J]. Journal of Applied Physics, 1960, 31(2): 255-267. doi: 10.1063/1.1735555
    [8]
    Sun B, Kunitomo S, Igarashi C. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water[J]. Journal of Physics D: Applied Physics, 2006, 39(17): 3814-3820. doi: 10.1088/0022-3727/39/17/016
    [9]
    Timoshkin I V, Fouracre R A, Given M J, et al. Hydrodynamic modelling of transient cavities in fluids generated by high voltage spark discharges[J]. Journal of Physics D: Applied Physics, 2006, 39(22): 4808-4817. doi: 10.1088/0022-3727/39/22/011
    [10]
    Axel W H K. Pulsed power discharges in water[D]. California: California Institute of Technology, 1996.
    [11]
    Liu S W, Liu Y, Lin F C, et al. Influence of plasma channel impedance model on electrohydraulic shockwave simulation[J]. Physics of Plasmas, 2019, 26: 023522. doi: 10.1063/1.5064847
    [12]
    王一博. 水中等离子体声源的理论与实验研究[D]. 长沙: 国防科技大学, 2012.

    Wang Yibo. Theoretical and experimental study of the underwater plasma acoustic source[D]. Changsha: Graduate School of National University of Defense Technology, 2012
    [13]
    贾少华, 赵金昌, 尹志强, 等. 基于高压电脉冲煤体增透的水激波波前时间变化规律研究[J]. 太原理工大学学报, 2015, 46(6):680-684, 690. (Jia Shaohua, Zhao Jinchang, Yin Zhiqiang, et al. Research on change laws of front time in water shock-wave based on pulsed high-voltage discharge in permeability enhancement in coal seams[J]. Journal of Taiyuan University of Technology, 2015, 46(6): 680-684, 690
    [14]
    尹志强, 赵金昌, 贾少华, 等. 基于高压电脉冲的水激波加载特性的实验研究[J]. 煤炭技术, 2016, 35(6):182-185. (Yin Zhiqiang, Zhao Jinchang, Jia Shaohua, et al. Experimental study of water shock load characteristics based on high-voltage pulsed discharge[J]. Coal Technology, 2016, 35(6): 182-185
    [15]
    李显东, 刘毅, 李志远, 等. 不均匀电场下水中脉冲放电观测及沉积能量对激波的影响[J]. 中国电机工程学报, 2017, 37(10):3028-3036. (Li Xiandong, Liu Yi, Li Zhiyuan, et al. Observation of underwater pulse discharge and influence of deposited energy on shock wave in non-uniform electric field[J]. Proceedings of CSEE, 2017, 37(10): 3028-3036
    [16]
    Li C, Duan L, Tan S, et al. Damage model and numerical experiment of high-voltage electro pulse boring in granite[J]. Energies, 2019, 12(4): 727. doi: 10.3390/en12040727
  • Relative Articles

    [1]Zhao Yizhe, Huang Cheng, Qing Anyong. Voltage tunable metamaterial for phase shifting at U-band based on liquid crystal[J]. High Power Laser and Particle Beams, 2019, 31(6): 063001. doi: 10.11884/HPLPB201931.190068
    [2]Sun Huifang, Dong Zhiwei. Design of magnetically insulated transmission line oscillatorwith high efficiency operating at high input voltage[J]. High Power Laser and Particle Beams, 2016, 28(03): 033021. doi: 10.11884/HPLPB201628.033021
    [3]Liu Qiang, Yang Yang, Zhou Haijing, Xu Fukai, Huang Kama. Electromagnetic characteristics of MNZ material[J]. High Power Laser and Particle Beams, 2015, 27(10): 103207. doi: 10.11884/HPLPB201527.103207
    [4]Ye Jian, Wang Qiang, Tang Xianfa, Li Bo, Li Xiangsen, Zhao Peng. Design of high power TE01 overmoded miter bend[J]. High Power Laser and Particle Beams, 2014, 26(06): 063019. doi: 10.11884/HPLPB201426.063019
    [5]Cao Xiaolong, Yao Jianquan, Yuan Cai, Zhao Xiaolei, Zhong Kai. Tunable resonant mode switch of split-ring resonators in terahertz regime[J]. High Power Laser and Particle Beams, 2013, 25(09): 2324-2328. doi: 10.3788/HPLPB20132509.2324
    [6]sun huifang, dong zhiwei, yang yulin. Numerical simulation of mode competition in magnetically insulated transmission line oscillator[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [7]chen daibing, wang dong, fan zhikai, meng fanbao. Numerical study on microwave generation characteristics of bifrequency MILO[J]. High Power Laser and Particle Beams, 2009, 21(04): 0- .
    [8]li zhi-qiang, zhong hui-huang, fan yu-wei, shu ting, yang jian-hua, xu liu-rong, zhao yan-song. Particle simulation and experimental research of S-band tapered magnetically insulated transmission line oscillator[J]. High Power Laser and Particle Beams, 2008, 20(01): 0- .
    [9]sun hui-fang, dong zhi-wei. 3-D simulation of higher order modes in MILO[J]. High Power Laser and Particle Beams, 2008, 20(04): 0- .
    [10]du ren-bo, luo yong, niu xin-jian. Design of high-power millimeter wave corrugated circular waveguide mode converter[J]. High Power Laser and Particle Beams, 2008, 20(01): 0- .
    [11]chen dai-bing, fan zhi-kai, zhou hai-jing, gao feng-qin, he hu, guo yan-hua, wang dong, wang xiao-dong, gong hai-tao, an hai-shi. L-band hard-tube magnetically insulated line oscillator[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- .
    [12]guo yan-hua, he hu, fan zhi-kai, chen dai-bing, wang dong. Numerical simulation of an improved type C-band MILO[J]. High Power Laser and Particle Beams, 2007, 19(02): 0- .
    [13]fan yu-wei, zhong hui-huang, zheng shi-yong, shu ting. Simulation investigation of X-band MILO[J]. High Power Laser and Particle Beams, 2006, 18(03): 0- .
    [14]guo yan-hua, fan zhi-kai, he hu, chen dai-bing. Numerical analysis on high frequency characteristics of MILO[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- .
    [15]fan yu-wei, shu ting, wang yong, li zhi-qiang, zhou jin-juan, zhao yan-song. Experimental design of a compact L-band magnetically insulated transmission line oscillator[J]. High Power Laser and Particle Beams, 2004, 16(06): 0- .
    [16]fan yu wei, shu ting, li zhi qiang. Particle simulation of a compact Lband magnetically insulated transmission line oscillator[J]. High Power Laser and Particle Beams, 2003, 15(12): 0- .
    [17]sun hui-fang, dong zhi-wei, jiang you-ming. Design and numerical simulation of a improved type MILO[J]. High Power Laser and Particle Beams, 2003, 15(12): 0- .
    [18]niu xin-jian, li hong-f u, xie zhong-lian. Analysis of high-power millimeter wave circular waveguide TM01—TE11 mode converter[J]. High Power Laser and Particle Beams, 2002, 14(01): 0- .
    [19]niu xin jian, li hong fu, yu sheng, xie zhong lian. Analysis of high power bent circular waveguide TE01—TM11 mode converter of critical angle[J]. High Power Laser and Particle Beams, 2002, 14(05): 0- .
  • Cited by

    Periodical cited type(2)

    1. 袁雅婷,曾冰倩,胡桐宁,李小飞,樊宽军. 可调电子束注入器调配调谐结构的设计及分析(英文). 强激光与粒子束. 2022(04): 129-135 . 本站查看
    2. 邱宇帆,李胜波,郑新建,符升平,白凤民. 多参数耦合下电子枪静电聚焦特性分析. 真空科学与技术学报. 2021(11): 1094-1100 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.6 %FULLTEXT: 19.6 %META: 77.3 %META: 77.3 %PDF: 3.1 %PDF: 3.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.9 %其他: 3.9 %其他: 0.1 %其他: 0.1 %China: 0.4 %China: 0.4 %India: 1.2 %India: 1.2 %Japan: 0.2 %Japan: 0.2 %United States: 0.1 %United States: 0.1 %[]: 0.7 %[]: 0.7 %上海: 0.4 %上海: 0.4 %东莞: 0.1 %东莞: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %兰州: 0.1 %兰州: 0.1 %内江: 0.1 %内江: 0.1 %北京: 27.3 %北京: 27.3 %十堰: 0.2 %十堰: 0.2 %南京: 0.1 %南京: 0.1 %南通: 0.1 %南通: 0.1 %印度: 0.3 %印度: 0.3 %台州: 0.2 %台州: 0.2 %嘉兴: 0.2 %嘉兴: 0.2 %天津: 0.3 %天津: 0.3 %宜春: 0.1 %宜春: 0.1 %巴利亚多利德: 0.1 %巴利亚多利德: 0.1 %广州: 0.2 %广州: 0.2 %张家口: 0.7 %张家口: 0.7 %成都: 0.9 %成都: 0.9 %扬州: 0.1 %扬州: 0.1 %承德: 0.1 %承德: 0.1 %拉合尔: 0.2 %拉合尔: 0.2 %新德里: 0.4 %新德里: 0.4 %昆明: 0.4 %昆明: 0.4 %普洱: 0.1 %普洱: 0.1 %杭州: 1.8 %杭州: 1.8 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.1 %桂林: 0.1 %武汉: 0.1 %武汉: 0.1 %洛阳: 0.1 %洛阳: 0.1 %深圳: 0.3 %深圳: 0.3 %湘潭: 0.3 %湘潭: 0.3 %漯河: 0.7 %漯河: 0.7 %石家庄: 0.5 %石家庄: 0.5 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.3 %绵阳: 0.3 %罗奥尔凯埃: 0.2 %罗奥尔凯埃: 0.2 %芒廷维尤: 12.5 %芒廷维尤: 12.5 %芝加哥: 0.1 %芝加哥: 0.1 %蚌埠: 0.2 %蚌埠: 0.2 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 40.1 %西宁: 40.1 %西安: 0.1 %西安: 0.1 %运城: 0.3 %运城: 0.3 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.3 %郑州: 0.3 %重庆: 0.1 %重庆: 0.1 %长沙: 0.8 %长沙: 0.8 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %马德里: 0.8 %马德里: 0.8 %魁北克省: 0.2 %魁北克省: 0.2 %其他其他ChinaIndiaJapanUnited States[]上海东莞中山临汾丹东乌鲁木齐兰州内江北京十堰南京南通印度台州嘉兴天津宜春巴利亚多利德广州张家口成都扬州承德拉合尔新德里昆明普洱杭州格兰特县桂林武汉洛阳深圳湘潭漯河石家庄秦皇岛绵阳罗奥尔凯埃芒廷维尤芝加哥蚌埠衡阳衢州西宁西安运城邯郸郑州重庆长沙长治阳泉马德里魁北克省

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (1578) PDF downloads(75) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return