Volume 32 Issue 5
Feb.  2020
Turn off MathJax
Article Contents
Zhao Hailong, Xiao Bo, Wang Ganghua, et al. Research progress of Magnetized Liner Inertial Fusion[J]. High Power Laser and Particle Beams, 2020, 32: 052001. doi: 10.11884/HPLPB202032.190357
Citation: Zhao Hailong, Xiao Bo, Wang Ganghua, et al. Research progress of Magnetized Liner Inertial Fusion[J]. High Power Laser and Particle Beams, 2020, 32: 052001. doi: 10.11884/HPLPB202032.190357

Research progress of Magnetized Liner Inertial Fusion

doi: 10.11884/HPLPB202032.190357
  • Received Date: 2019-09-16
  • Rev Recd Date: 2020-01-10
  • Publish Date: 2020-02-10
  • Magnetized Liner Inertial Fusion (MagLIF) is a new concept of controlled fusion, which combines both advantages of traditional magnetic confinement fusion (MCF) and inertial confinement fusion (ICF). It has promising application potentials because theoretically it can dramatically lower the difficulties in realizing controlled fusion. For purpose of better understandings of MagLIF, we investigate and summarize the main progresses  achieved in this field. This paper will acquaint  researchers with MagLIF research progress in the following domains: theoretical and analytic research, numerical simulations, experimental configurations, measurements and diagnostics, load designs and fabrications, laser driving MagLIF and auto-magnetization target. It will also provide heuristic perspectives for future MagLIF research.

  • loading
  • [1]
    Aymar R. The ITER project[J]. IEEE Trans Plasma Science, 1997, 6: 1187.
    [2]
    Shimomura Y, Spears W. Review of the ITER project[J]. IEEE Trans Plasma Science, 2004, 14: 1369.
    [3]
    Huang Chuanjun, Li Laifeng. Magnetic confinement fusion: A brief review[J]. Front Energy, 2018, 12: 305. doi: 10.1007/s11708-018-0539-1
    [4]
    Hurricane O A, Springer P T, Patel P K, et al. Approaching a burning plasma on the NIF[J]. Phys Plasmas, 2019, 26: 052704. doi: 10.1063/1.5087256
    [5]
    McCrory R L, Meyerhofer D D, Betti R, et al. Progress in direct-drive inertial confinement fusion[J]. Phys Plasmas, 2008, 15: 055503. doi: 10.1063/1.2837048
    [6]
    Mordecai D R, Meyerhofer1 D D, Betti R, et al. The physics issues that determine inertial confinement fusion target gain and driver requirements: A tutorial[J]. Phys Plasmas, 1999, 6: 1690. doi: 10.1063/1.873427
    [7]
    Freidberg J. 等离子体物理与聚变能[M]. 北京: 科学出版社, 2010: 50-51.

    Freidberg J. Plasma physics and fusion energy. Beijing: Science Press, 2010: 50-51
    [8]
    Thio Y C F, Panarella E, Knupp C E, et al. Magnetized target fusion in a spheroidal geometry with standoff drivers[C]//The 2nd Conference on Current Trends in International Fusion Research. 1999: 113.
    [9]
    Parks P B. On the efficacy of imploding plasma liners for magnetized fusion target compression[J]. Phys Plasmas, 2008, 15: 062506. doi: 10.1063/1.2948346
    [10]
    Cassibry J T, Stanic M, Hsu S C, et al. Tendency of spherically imploding plasma liners formed by merging plasma jets to evolve toward spherical symmetry[J]. Phys Plasmas, 2012, 19: 052702. doi: 10.1063/1.4714606
    [11]
    Schoenberg K F, Siemon R E. Magnetized target fusion: A proof-of-principle research proposal[R].LA-UR-98-2413
    [12]
    Kirkpatrick R C. Magnetized target fusion(MTF) principle status and international collaboration[C]//Latin America Workshop on Plasma Physics. 1998.
    [13]
    Lindemuth I R, Kirkpatrick R C. Parameter space for magnetized fuel targets in inertial confinement fusion[J]. Nucl Fusion, 1983, 23: 263. doi: 10.1088/0029-5515/23/3/001
    [14]
    Perkins L J, M Ho D D, Logan B G, et al. The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion[J]. Phys Plasmas, 2017, 24: 062708. doi: 10.1063/1.4985150
    [15]
    Slutz S A, Herrmann M C, Vesey R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Phys Plasmas, 2010, 17: 056303. doi: 10.1063/1.3333505
    [16]
    Harvey-Thompson A, Geissel M, Jennings C, et al. Constraining preheat energy deposition in MagLIF experiments with multi-frame shadowgraphy[J]. Phys Plasmas, 2019, 26: 032707. doi: 10.1063/1.5086044
    [17]
    Paradela J, Garcia-Rubio F, Sanz J. Alpha heating enhancement in MagLIF targets: A simple analytic model[J]. Phys Plasmas, 2019, 26: 012705. doi: 10.1063/1.5079519
    [18]
    Perkins L J, Logan B G, Zimmerman G B, et al. Two-dimensional simulation of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields[J]. Phys Plasmas, 2013, 20: 072708. doi: 10.1063/1.4816813
    [19]
    Slutz S A, Roger A V. High-gain magnetized inertial fusion[J]. Phys Rev Lett, 2012, 108: 025003. doi: 10.1103/PhysRevLett.108.025003
    [20]
    Sefkow A B, Slutz S A, Koning J M, et al. Design of magnetized liner inertial fusion experiments using the Z facility[J]. Phys Plasmas, 2014, 21: 072711. doi: 10.1063/1.4890298
    [21]
    Slutz S A. Magnetized liner inertial fusion(MagLIF): The promise and challenges[C]//MagLIF Workshop. 2012.
    [22]
    Gomez M R, Slutz S A, Sefkow A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion[J]. Phys Rev Lett, 2014, 113: 155003. doi: 10.1103/PhysRevLett.113.155003
    [23]
    Knapp P F, Gomez M R , Hansen S B ,et al. Origins and effects of mix on magnetized liner inertial fusion target performance[J]. Phys Plasmas, 2019, 26: 012704. doi: 10.1063/1.5064548
    [24]
    Pecover J D, Chittenden J P. Instability growth for magnetized liner inertial fusion seeded by electro-thermal, electro-choric, and material strength effects[J]. Phys Plasmas, 2015, 22: 102701. doi: 10.1063/1.4932328
    [25]
    Appelbe B, Pecover J, Chittenden J, et al. The effects of magnetic field topology on secondary neutron spectra in Magnetized Liner Inertial Fusion[J]. High Energy Density Physics, 2017, 22: 27. doi: 10.1016/j.hedp.2017.01.005
    [26]
    Knapp C E, Kirkpatrick R C. Possible energy gain for a plasma-liner-driven magneto-inertial fusion concept[J]. Phys Plasmas, 2014, 21: 070701. doi: 10.1063/1.4885075
    [27]
    Marinak M M, Kerbel G D, Gentile N A, et al. Three-dimensional HYDRA simulations of National Ignition Facility targets[J]. Phys Plasmas, 2001, 8: 2275. doi: 10.1063/1.1356740
    [28]
    Ramis R, Meyer-ter-Vehn J. MULTI-IFE—A one-dimensional computer code for Inertial Fusion Energy (IFE) targets simulations[J]. Comput Phys Commun, 2016, 203: 226. doi: 10.1016/j.cpc.2016.02.014
    [29]
    Ramis R. 3D simulations of thin shell capsule implosions[C]//The 2nd International Conference on Matter and Radiation at Extremes. 2017.
    [30]
    Wu Fuyuan. Running MULTI-IFE standalone in Windows/Linux operating system[C]//Local Symposium. 2017.
    [31]
    Chen Shijia. Numerical simulation of MagLIF by MULTI-IFE[C]//Local Symposium. 2017.
    [32]
    McBride R D, Slutz S A. A semi-analytic model of magnetized liner inertial fusion[J]. Phys Plasmas, 2015, 22: 052708. doi: 10.1063/1.4918953
    [33]
    McBride R. D, Slutz S A, Vesey R A, et al. Exploring magnetized liner inertial fusion with a semi-analytic model[J]. Phys Plasmas, 2016, 23: 012705. doi: 10.1063/1.4939479
    [34]
    Ryutov D D, Cuneo M E, Herrman M C, et al. Simulating the magnetized liner inertial fusion plasma confinement with smaller-scale experiments[J]. Phys Plasmas, 2012, 19: 062706. doi: 10.1063/1.4729726
    [35]
    Velikovich A L, Giuliani J L, Zalesak S T. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma[J]. Phys Plasmas, 2015, 22: 042702. doi: 10.1063/1.4916777
    [36]
    Lindemuth I R. The ignition design space of magnetized target fusion[J]. Phys Plasmas, 2015, 22: 122712. doi: 10.1063/1.4937371
    [37]
    Garcia-Rubio F, Sanz J. Mass ablation and magnetic flux losses through a magnetized plasma-liner wall interface[J]. Phys Plasmas, 2017, 24: 072710. doi: 10.1063/1.4991391
    [38]
    Garcia-Rubio F, Sanz J. Mass diffusion and liner material effect in a MagLIF fusion-like plasma[J]. Phys Plasmas, 2018, 25: 082112. doi: 10.1063/1.5044642
    [39]
    Garcia-Rubio F, Sanz J, Betti R. Magnetic flux conservation in an imploding plasma[J]. Phys Rev E, 2018, 97: 011201. doi: 10.1103/PhysRevE.97.011201
    [40]
    Sinars D B, Slutz S A, Herrmann M C, et al. Measurement of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid Al tubes driven by the 20-MA, 100-ns Z facility[J]. Phys Rev Lett, 2010, 105: 185001. doi: 10.1103/PhysRevLett.105.185001
    [41]
    Peterson K J, Yu E P, Sinars D B, et al. Herrmann simulations of electro-thermal instability growth in solid aluminum rods[J]. Phys Plasmas, 2013, 20: 056305. doi: 10.1063/1.4802836
    [42]
    Peterson K J, Awe T J, Yu E P, et al. Electro-thermal instability mitigation by using thick dielectric coatings on magnetically imploded conductors[J]. Phys Rev Lett, 2014, 112: 135002. doi: 10.1103/PhysRevLett.112.135002
    [43]
    Awe T J, McBride R D, Jennings C A, et al. Observations of modified three-dimensional instability structure for imploding Z-pinch liners that are premagnetized with an axial field[J]. Phys Rev Lett, 2013, 111: 235005. doi: 10.1103/PhysRevLett.111.235005
    [44]
    Sefkow A B. On the helical instability and efficient stagnation pressure production in thermonuclear magnetized inertial fusion[C]//58th Annual Meeting of the Division of Plasma Physics of the American Physical Society. 2016.
    [45]
    Seyler C E, Martin M R, Hamlin N D. Helical instability in MagLIF due to axial flux compression by low-density plasma[J]. Phys Plasmas, 2018, 25: 062711. doi: 10.1063/1.5028365
    [46]
    Peterson K J. Dramatic reduction of magneto-Rayleigh Taylor instability growth in magnetically driven Z-pinch liners [C]//20th International Conference on Plasma Science. 2015.
    [47]
    Basko M M, Kemp A J, Meyer-ter-Vehn J. Ignition conditions for magnetized target fusion in cylindrical geometry[J]. Nucl Fusion, 2000, 40: 59. doi: 10.1088/0029-5515/40/1/305
    [48]
    Gomez M R, Slutz S A, Sefkow A B, et al. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments[J]. Phys Plasmas, 2015, 22: 056306. doi: 10.1063/1.4919394
    [49]
    Barnak D H. Laser-driven magnetized liner inertial fusion on OMEGA[J]. Phys Plasmas, 2017, 24: 056310. doi: 10.1063/1.4982692
    [50]
    Davies J R, Davies J R, Betti R, et al. Laser-driven magnetized liner inertial fusion[J]. Phys Plasmas, 2017, 24: 062701. doi: 10.1063/1.4984779
    [51]
    Sinars D B. Magnetized Liner Inertial Fusion (MagLIF) research at Sandia National Laboratories [C]//1st Chinese Pulsed Power Society Workshop. 2015.
    [52]
    Geissel M. LEH transmission and early fuel heating for MagLIF with Z-beamlet [C]//45th Anomalous Absorption Conference. 2015.
    [53]
    Gomez M. Recent progress in Magnetized Liner Inertial Fusion (MagLIF) experiments[C]//20th IEEE Pulsed Power Conference. 2015.
    [54]
    Geissel M, Awe T J, Bliss D E, et al. Nonlinear laser-plasma interaction in magnetized liner inertial fusion[C]/Proc of SPIE. 2016: 97310O.
    [55]
    Geissel M, Harvey-Thompson A J, Awe T J, et al. Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets[J]. Phys Plasmas, 2018, 25: 022706. doi: 10.1063/1.5003038
    [56]
    Davies J R, Bahr R E, Barnak D H, et al. Laser entrance window transmission and reflection measurements for preheating in magnetized liner inertial fusion[J]. Phys Plasmas, 2018, 25: 062704. doi: 10.1063/1.5030107
    [57]
    Slutz S A. On the feasibility of charged particle-beam preheat for MagLIF[R]. SAND 2015-1515R.
    [58]
    Hansen S. Investigating inertial confinement fusion target fuel conditions through X-ray spectroscopy[J]. Phys Plasmas, 2012, 19: 056312. doi: 10.1063/1.3694246
    [59]
    Hansen S. Transport in and diagnostics of Magnetized Liner Inertial Fusion(MagLIF) experiments[C]//Radiation High Energy Density Physics Workshop. 2015.
    [60]
    Rochau G A. MagLIF and the potential of high-speed single line-of-sight detection for ICF[R]. SAND 2015-4415PE.
    [61]
    Hansen S B, Sefkow A B, Nagayama T N, et al. Diagnosing laser-preheated magnetized plasmas relevant to magnetized liner inertial fusion[J]. Phys Plasmas, 2015, 22: 122708. doi: 10.1063/1.4938047
    [62]
    Patrick K. Magnetized Liner Inertial Fusion (MagLIF) experiments on Z: Spectroscopy and what’s been learned about stagnation [R]. SAND 2015-5078PE.
    [63]
    Schmit P F, Knapp P F, Hansen S B, et al. Understanding fuel magnetization and mix using secondary nuclear reactions in magneto-inertial fusion[J]. Phys Rev Lett, 2014, 113: 155004. doi: 10.1103/PhysRevLett.113.155004
    [64]
    Knapp P F, Schmit P F, Hansen S B, et al. Effects of magnetization on fusion product trapping and secondary neutron spectra[J]. Phys Plasmas, 2015, 22: 056312. doi: 10.1063/1.4920948
    [65]
    Fooks J A, Carlson L C, Fitzsimmons P, et al. Evolution of Magnetized Liner Inertial Fusion(MagLIF) targets[J]. Fusion Sci Technol, 2018, 73: 1. doi: 10.1080/15361055.2017.1387009
    [66]
    Awe T J, Shelton K P, Sefkow A B, et al. Development of a cryogenically cooled platform for the Magnetized Liner Inertial Fusion(MagLIF) program[J]. Rev Sci Instrum, 2017, 88: 093515. doi: 10.1063/1.4986041
    [67]
    Lamppa D C. The path to 30 tesla: field coil designs for the Magnetized Liner Inertial Fusion (MagLIF) concept at Sandia’s Z facility[C]. SAND 2015-4163C.
    [68]
    Gourdain P A, Adams M B, Davies J R, et al. Axial magnetic field injection in magnetized liner inertial fusion[J]. Phys Plasmas, 2017, 24: 102712. doi: 10.1063/1.4986640
    [69]
    Shipley G A, Awe T J, Hutsel B T, et al. Megagauss-level magnetic field production in cm-scale auto-magnetizing helical liners pulsed to 500 kA in 125 ns[J]. Phys Plasmas, 2018, 25: 052703. doi: 10.1063/1.5028142
    [70]
    Slutz S A, Stygar W A, Gomez M R, et al. Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators[J]. Phys Plasmas, 2016, 23: 022702. doi: 10.1063/1.4941100
    [71]
    Slutz S A. Scaling of magnetized inertial fusion with drive current rise-time[J]. Phys Plasmas, 2018, 25: 082707. doi: 10.1063/1.5040116
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (1903) PDF downloads(151) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return