Tang Xiaohu, Hu Dan, Liu Kai. A phase stereo matching method based on integrated epipolar line using binocular structured light[J]. High Power Laser and Particle Beams, 2022, 34: 111004. doi: 10.11884/HPLPB202234.220102
Citation: Yang Hui, Song Hang, Xiao Xia. PCIe electromagnetic interference analysis and optimization design based on co-simulation of field and circuit[J]. High Power Laser and Particle Beams, 2020, 32: 043202. doi: 10.11884/HPLPB202032.190360

PCIe electromagnetic interference analysis and optimization design based on co-simulation of field and circuit

doi: 10.11884/HPLPB202032.190360
  • Received Date: 2019-09-16
  • Rev Recd Date: 2019-12-30
  • Publish Date: 2020-03-06
  • In this paper, the rationality of Electromagnetic Compatibility(EMC)design of Printed Circuit Board (PCB) is evaluated in advance through electromagnetic simulation. The purpose of this method is to reduce the chances that the Electromagnetic Interference (EMI) of PCB does not meet GMW 3097 standard in EMC test. Firstly, the 3D electromagnetic field simulation of the Peripheral Component Interconnect express (PCIe) module on the PCB is performed. Then the field simulation is dynamically linked with the circuit simulation of the Simulation Program with Integrated Circuit Emphasis (SPICE) model of chip on the PCIe module, so that the co-simulation of field and circuit is performed. According to the experimental test, the accuracy of this simulation method is within 6 dBμV, which satisfies the deviation of PCB processing technology and the uncertainty of the experimental test. Thus, this simulation method meets the accuracy requirements. Therefore, the EMI of PCB can be evaluated and the PCB design can be optimized by this simulation method. After the 33 Ω resistors on the PCIe module was replaced by magnetic beads, the EMI of the PCB at 1.6 GHz is reduced by 13.4 dB. According to the 1-m method specified in the CISPR 25 standard for testing, the EMI of PCB becomes −3.4 dBμV, which is lower than the GMW 3097 standard requirement. Therefore, the effectiveness of this measure is verified.
  • [1]
    Veropoulos G P, Papakanellos P J, Vlachos C. A probabilistic approach for the susceptibility assessment of a straight PCB trace excited by random plane-wave fields[J]. IEEE Trans Electromagn Compat, 2018, 60(1): 258-265. doi: 10.1109/TEMC.2017.2704911
    [2]
    Shantala, Sudheer M L. Analysis of electromagnetic interference radiations from the PCB traces[C]//International Conference on Recent Trends in Electrical, Control and Communication. 2018: 74-78.
    [3]
    Huang C Y, Chen C H, Greene C. Using parametric design to reduce the EMI of electronics products—example of medical-grade touch panel computer[J]. Prog Electromagn Res C, 2019, 89(1): 13-26.
    [4]
    Tang Qiu, Wang Yaonan, Christopoulos C. Simulation and research of the PCB vias effects[C]//International Conference on Natural Computation. 2007: 110-114.
    [5]
    Pan S, Fan J. Characterization of via structures in multilayer printed circuit boards with an equivalent transmission-line model[J]. IEEE Trans Electromagn Compat, 2012, 54(5): 1077-1086. doi: 10.1109/TEMC.2012.2187664
    [6]
    Archambeault B, Brench C, Connor S. Review of printed-circuit-board level EMI/EMC issues and tools[J]. IEEE Trans Electromagn Compat, 2010, 52(2): 455-461. doi: 10.1109/TEMC.2010.2044182
    [7]
    Carobbi C F M, Izzo D. Evaluation and improvement of the reproducibility of CISPR 25 ALSE test method[J]. IEEE Trans Electromagn Compat, 2018, 60(4): 1069-1077. doi: 10.1109/TEMC.2017.2780220
    [8]
    IEC CISPR 25, Vehicles, boats and internal combustion engines—radio disturbance characteristics—limits and methods of measurement for the protection of on-board receivers[S]. 2015.
    [9]
    GMW 3097, General specification for electrical/electronic components and subsystems, electromagnetic compatibility[S]. 2015.
    [10]
    赵阳, 颜伟, 赵波, 等. 电路辐射干扰机理诊断与特性估计[J]. 电工技术学报, 2010, 25(10):6-13. (Zhao Yang, Yan Wei, Zhao Bo, el at. EMI radiated noise diagnosis and estimation for HF circuits[J]. Transactions of China Electrotechnical Society, 2010, 25(10): 6-13
    [11]
    邱剑. 差分线对的PCB设计要点[J]. 通信技术, 2010, 43(6):221-223. (Qiu Jian. Essentials of differential pairs in PCB design[J]. Communications Technology, 2010, 43(6): 221-223 doi: 10.3969/j.issn.1002-0802.2010.06.076
    [12]
    赵志超. 高速差分传输线模型的分析与设计[D]. 西安: 西安电子科技大学, 2012: 19-25.

    Zhao Zhichao. Analysis and design of high-speed differential transmission line model. Xi'an: Xidian University, 2012: 19-25
    [13]
    Kuehn S, Pfeifer S, Kochali B, et al. A novel automated phasor measurement system for validated and traceable EMC/EMI near-field analysis[J]. IEEE Electromagn Compat Mag, 2016, 5(2): 41-47.
    [14]
    Zhang Jiachen, Wei Xingchang, Yang Rui, et al. An efficient probe calibration based near-field-to-near-field transformation for EMI diagnosis[J]. IEEE Trans Antennas Propagat, 2019, 67(6): 4141-4147. doi: 10.1109/TAP.2019.2902741
    [15]
    Mikki S, Sarkar D, Antar Y M M. On localized antenna energy in electromagnetic radiation[J]. Prog Electromagn Res M, 2019, 79(1): 1-10.
    [16]
    Connor S, Archambeault B, Mondal M. The impact of common mode currents on signal integrity and EMI in high-speed differential data links[C]//IEEE International Symposium on Electromagnetic Compatibility. 2008: 1-5.
  • Relative Articles

    [1]Liu Qinghua, Li Jing, Shan Lijun, Xiao Dexin, Pan Qing, Liu Yu, Wang Hanbin, Hu Dongcai, Zhang Peng, Li Shoutao, Wang Jianxin, Zhang Demin, Yan Longgang, Zhang Xiaoli, Gan Kongyin, Zhang Chengxin, Li Peng, Shen Xuming, Bo Wei, Chen Yunbin, Li Xiaohui, Wang Shuaihua, Yu Yong, Chen Hao, Hu Xiutai, Ma Guowu, Zhou Kui, Zhou Zheng, Wang Yuan, Yang Xingfan, Wu Dai, Li Ming, Chen Menxue, Hu Jinguang, Zhao Jianheng, Fan Guobin. High-energy CT system with 10 lp/mm spatial resolution[J]. High Power Laser and Particle Beams, 2022, 34(12): 124001. doi: 10.11884/HPLPB202234.220322
    [2]Li Ruichun, Zhang Qinglei, Mi Qingru, Jiang Bocheng, Wang Kun, Li Changliang, Zhao Zhentang. Application of machine learning in orbital correction of storage ring[J]. High Power Laser and Particle Beams, 2021, 33(3): 034007. doi: 10.11884/HPLPB202133.200318
    [3]Mi Zhenghui, Sha Peng, Sun Yi, Dai Jianping, Pan Weimin, Wang Guangwei, Wang Qunyao, Li Zhongquan, Ma Qiang, Lin Haiying, Huang Tongming, Wang Muyuan, Wang Honglei. Operation of domestic 500 MHz superconducting cavity for BEPC Ⅱ[J]. High Power Laser and Particle Beams, 2018, 30(8): 085103. doi: 10.11884/HPLPB201830.170485
    [4]Tang Kai, Wang Jigang, Sun Baogen, Tang Leilei, Lu Ping, Yang Yongliang, Cheng Chaocai, Li Hao. Beam transverse size and emittance measurement of HLS Ⅱ using interferometry[J]. High Power Laser and Particle Beams, 2015, 27(07): 075101. doi: 10.11884/HPLPB201527.075101
    [5]Wu Fangfang, Zhou Zeran, Sun Baogen, Yang Yongliang, Lu Ping, Li Wubin, Ma Tianji, Zou Junying, Cheng Chaocai. Offline calibration of stripline beam position monitor for HLS Ⅱ[J]. High Power Laser and Particle Beams, 2013, 25(11): 2971-2975. doi: 10.3788/HPLPB20132511.2971
    [6]Li Xiaoyu, Xu Gang. Minimum emittance of three-bend achromats[J]. High Power Laser and Particle Beams, 2012, 24(08): 1947-1950. doi: 10.3788/HPLPB20122408.1947
    [7]chu chen, huang guirong, jin kai, wang xuetao, wang jinxiang, jia dachun. Analysis and measurement of storage ring Robinson instability[J]. High Power Laser and Particle Beams, 2011, 23(10): 0- .
    [8]leng yongbin, yan yingbing, yuan renxian, zhou weimin. Betatron tune measurement system for Shanghai Synchrotron Radiation Facility storage ring[J]. High Power Laser and Particle Beams, 2010, 22(10): 0- .
    [9]bu ling-shan, zhao zhen-tang, yin li-xin, du han-wen, yan zhong-bao. Vibration damping of magnet girder assembly of Shanghai synchrotron radiation facility’s storage ring[J]. High Power Laser and Particle Beams, 2008, 20(01): 0- .
    [10]wang shao-ming, man kai-di, cai guo-zhu, guo yi-zhen, yang sheng-li. Alignment and survey of magnets for cooler-storage-ring main ring[J]. High Power Laser and Particle Beams, 2005, 17(05): 0- .
    [11]li ge, zhou yin-gui, zhang peng-fei, chen nian, he duo-hui. Performance analysis of upgrading optical klystron for FEL[J]. High Power Laser and Particle Beams, 2005, 17(02): 303- .
    [12]liu gong-fa, xie dong, li wei-min, liu zu-ping. Beam soft ramping control of Hefei light source storage ring[J]. High Power Laser and Particle Beams, 2004, 16(08): 0- .
    [13]luo shi yu, hu xi duo, shao ming zhu, wu mu ying, chen shao wen. Radiation energy loss and cooling of onedimensional crystallization beam[J]. High Power Laser and Particle Beams, 2003, 15(07): 0- .
    [14]shen lian guan, wang jun hua, wang gui cheng, he xin, zhao jian bin, li xiao guang, yao jian ping, zhu yang bin. Development of BPM calibrator and its application for phase II in HLS[J]. High Power Laser and Particle Beams, 2002, 14(05): 0- .
    [15]sun bao-gen, he duo-hui, xu hong-liang, lu ping, wang jun-hua, gao yun-feng, liu jin-ying, wang lin. Application research of tune measurement-system in Hefei light source[J]. High Power Laser and Particle Beams, 2002, 14(02): 0- .
    [16]yu xiang-kun, liu zu-ping, li wei-min, li yong-jun, diao cao-zheng. Differential relation between optic parameter and lattice parameter in HLS storage ring[J]. High Power Laser and Particle Beams, 2001, 13(02): 0- .
    [17]ding xiao-ping, kang wen, han qian. Design of kicker magnets for the storage ring injection of Shanghai Synchrotron Radiation Facility[J]. High Power Laser and Particle Beams, 2001, 13(03): 0- .
    [18]liu jin-ying, xu hong-liang, sun bao-geng, li ge, zhang shan-cai, he duo-hui. Using iccd as a fast optical switch to measure harmonic super-radiation from an optical klystron in a storage ring[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- .
    [20]li yongjun jin yuming liu zuping, . STUDY ON BEAM EMITTANCE FOR HLS STORAGE RING[J]. High Power Laser and Particle Beams, 1998, 10(04): 0- .
  • Cited by

    Periodical cited type(2)

    1. 陆益敏, 黄国俊, 郭延龙, 丁方正, 陈霞, 韦尚方, 米朝伟. 激光沉积大面积均匀类金刚石膜的设计改进及实验. 兵工学报. 2017(03): 555-560 .
    2. 王利, 王鹏, 王刚, 王培培, 白云立, 刘华松. 制备工艺条件对SiO_2薄膜非均质特性的影响. 强激光与粒子束. 2016(02): 46-51 . 本站查看

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.1 %FULLTEXT: 24.1 %META: 74.6 %META: 74.6 %PDF: 1.3 %PDF: 1.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.8 %其他: 6.8 %其他: 0.9 %其他: 0.9 %Central District: 0.2 %Central District: 0.2 %China: 0.3 %China: 0.3 %Hanoi: 0.2 %Hanoi: 0.2 %Koesan: 0.2 %Koesan: 0.2 %Seattle: 0.1 %Seattle: 0.1 %Seongnam-si: 0.2 %Seongnam-si: 0.2 %United States: 0.3 %United States: 0.3 %[]: 0.7 %[]: 0.7 %上海: 2.8 %上海: 2.8 %东京: 0.3 %东京: 0.3 %东莞: 0.3 %东莞: 0.3 %中央邦: 0.1 %中央邦: 0.1 %中山: 0.2 %中山: 0.2 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %佛山: 0.4 %佛山: 0.4 %保定: 0.2 %保定: 0.2 %兰州: 0.1 %兰州: 0.1 %北京: 3.1 %北京: 3.1 %十堰: 0.2 %十堰: 0.2 %南京: 0.8 %南京: 0.8 %南昌: 0.9 %南昌: 0.9 %南通: 0.2 %南通: 0.2 %厦门: 0.1 %厦门: 0.1 %台北: 0.3 %台北: 0.3 %台州: 0.3 %台州: 0.3 %合肥: 0.4 %合肥: 0.4 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.1 %哥伦布: 0.1 %大连: 0.3 %大连: 0.3 %天津: 1.4 %天津: 1.4 %宁波: 0.1 %宁波: 0.1 %安庆: 0.1 %安庆: 0.1 %安康: 0.1 %安康: 0.1 %宜春: 0.1 %宜春: 0.1 %宣城: 0.1 %宣城: 0.1 %崇左: 0.1 %崇左: 0.1 %常州: 0.2 %常州: 0.2 %常德: 0.1 %常德: 0.1 %广州: 0.8 %广州: 0.8 %张家口: 0.3 %张家口: 0.3 %徐州: 0.1 %徐州: 0.1 %悉尼: 0.2 %悉尼: 0.2 %成都: 2.4 %成都: 2.4 %扬州: 0.1 %扬州: 0.1 %拉法叶: 0.3 %拉法叶: 0.3 %无锡: 0.9 %无锡: 0.9 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.6 %杭州: 1.6 %桂林: 0.1 %桂林: 0.1 %武汉: 1.0 %武汉: 1.0 %沈阳: 0.4 %沈阳: 0.4 %泉州: 0.1 %泉州: 0.1 %泰安: 0.1 %泰安: 0.1 %洛杉矶: 0.2 %洛杉矶: 0.2 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.2 %济南: 0.2 %淄博: 0.1 %淄博: 0.1 %深圳: 1.3 %深圳: 1.3 %渭南: 0.1 %渭南: 0.1 %湖州: 0.3 %湖州: 0.3 %漯河: 0.9 %漯河: 0.9 %潍坊: 0.1 %潍坊: 0.1 %烟台: 0.1 %烟台: 0.1 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.4 %福州: 0.4 %科隆: 0.3 %科隆: 0.3 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 35.0 %芒廷维尤: 35.0 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.3 %苏州: 0.3 %荆州: 0.1 %荆州: 0.1 %莫斯科: 0.2 %莫斯科: 0.2 %衢州: 0.3 %衢州: 0.3 %西宁: 20.0 %西宁: 20.0 %西安: 0.5 %西安: 0.5 %西尾: 0.2 %西尾: 0.2 %西雅图: 0.2 %西雅图: 0.2 %诺沃克: 1.9 %诺沃克: 1.9 %贵阳: 0.2 %贵阳: 0.2 %达拉斯: 0.1 %达拉斯: 0.1 %运城: 0.7 %运城: 0.7 %邢台: 0.1 %邢台: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.1 %郑州: 0.1 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.3 %重庆: 0.3 %长沙: 1.6 %长沙: 1.6 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.9 %青岛: 0.9 %鞍山: 0.1 %鞍山: 0.1 %首尔特别: 0.5 %首尔特别: 0.5 %马鞍山: 0.1 %马鞍山: 0.1 %其他其他Central DistrictChinaHanoiKoesanSeattleSeongnam-siUnited States[]上海东京东莞中央邦中山临汾丹东佛山保定兰州北京十堰南京南昌南通厦门台北台州合肥哈尔滨哥伦布大连天津宁波安庆安康宜春宣城崇左常州常德广州张家口徐州悉尼成都扬州拉法叶无锡昆明晋城普洱朝阳杭州桂林武汉沈阳泉州泰安洛杉矶洛阳济南淄博深圳渭南湖州漯河潍坊烟台石家庄福州科隆秦皇岛绵阳芒廷维尤芝加哥苏州荆州莫斯科衢州西宁西安西尾西雅图诺沃克贵阳达拉斯运城邢台邯郸郑州鄂州重庆长沙阳泉青岛鞍山首尔特别马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (1451) PDF downloads(69) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return