Citation: | Qi Xiongfei, Hou Liqiang, Du Zhengyu, et al. Numerical simulation and experimental verification on distribution characteristics of hydrogen flow in single compartment[J]. High Power Laser and Particle Beams, 2020, 32: 056002. doi: 10.11884/HPLPB202032.190420 |
The distribution characteristics of hydrogen flow in local single space is a special concern of nuclear power plant and hydrogen storage device. In this paper, a single compartment of the experimental device is used as a geometric structure to establish a computational fluid dynamics analysis model for the numerical study of hydrogen distribution in small-scale space. By comparing the experimental data with the simulated data, the choice of the optimal turbulence model is given, and the flow distribution of hydrogen in small-scale space under low mass flow rate condition is simulated. The numerical simulation results obtained by Realizable k-ε, RNG k-ε and Standard k-ε turbulence models in the six two-equation turbulence models agree well with the experimental data, which can accurately reflect the release process and distribution of hydrogen in small-scale space. In low mass flow rate case, the radial range of the mainstream region of hydrogen is small, and hydrogen is stably and evenly distributed in the middle and upper part of the compartment.
[1] |
Dimmelmeier H, Jürgen E, Movahed M A. Computational validation of the EPR combustible gas control system[J]. Nuclear Engineering and Design, 2012, 249: 118-124. doi: 10.1016/j.nucengdes.2011.08.053
|
[2] |
Deng Jian, Cao Xuewu. A study on implementing a passive autocatalytic recombiner PAR-system in the large-dry containment[J]. Nuclear Engineering and Design, 2008, 238(7): 2554-2560.
|
[3] |
Prasad K, Pitts W M, Yang J C. A numerical study of the release and dispersion of a buoyant gas in partially confined spaces[J]. International Journal of Hydrogen Energy, 2011, 36(8): 5200-5210. doi: 10.1016/j.ijhydene.2011.01.118
|
[4] |
Cariteau B, Brinster J, Tkatschenko I. Experiments on the distribution of concentration due to buoyant gas low flow rate release in an enclosure[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2505-2512. doi: 10.1016/j.ijhydene.2010.04.054
|
[5] |
Cariteau B, Tkatschenko I. Experimental study of the effects of vent geometry on the dispersion of a buoyant gas in a small enclosure[J]. International Journal of Hydrogen Energy, 2013, 38(19): 8030-8038. doi: 10.1016/j.ijhydene.2013.03.100
|
[6] |
Xiao Jianjun, Travis J R. How critical is turbulence modeling in gas distribution simulations of large-scale complex nuclear reactor containment?[J]. Annals of Nuclear Energy, 2013, 56: 227-242. doi: 10.1016/j.anucene.2013.01.016
|
[7] |
Müller C, Hughes E D, Niederauer G F, et al. GASFLOW: A computational fluid dynamics code for gases, aerosols, and combustion, volume 3: Assessment manual[J]. Office of Scientific & Technical Information Technical Reports, 1998.
|
[8] |
Wilkening H, Baraldi D, Heitsch M. CFD simulations of light gas release and mixing in the Battelle Model-Containment with CFX[J]. Nuclear Engineering and Design, 2008, 238(3): 618-626. doi: 10.1016/j.nucengdes.2007.02.042
|
[9] |
Peng Cheng, Tong Lili, Cao Xuewu. Numerical analysis on hydrogen stratification and post-inerting of hydrogen risk[J]. Annals of Nuclear Energy, 2016, 94: 451-460. doi: 10.1016/j.anucene.2016.04.029
|
[10] |
Swain M R, Shriber J, Swain M N. Comparison of hydrogen, natural gas, liquified petroleum gas, and gasoline leakage in a residential garage[J]. Energy & fuels, 1998, 12(1): 83-89.
|
[11] |
Agranat V, Cheng Z, Tchouvelev A. CFD modeling of hydrogen releases and dispersion in hydrogen energy station[C]//Proceedings of the 15th World Hydrogen Energy Conference. 2004.
|
[12] |
Sonnenkalb M, Poss G. The international test programme in the THAI facility and its use for code validation[C]//EUROSAFWE Forum. 2009.
|
[13] |
Schefer R W, Houf W G, Williams T C. Investigation of small-scale unintended releases of hydrogen: Buoyancy effects[J]. International Journal of Hydrogen Energy, 2008, 33(17): 4702-4712. doi: 10.1016/j.ijhydene.2008.05.091
|
[14] |
Houf W, Schefer R. Analytical and experimental investigation of small-scale unintended releases of hydrogen[J]. International Journal of Hydrogen Energy, 2008, 33(4): 1435-1444. doi: 10.1016/j.ijhydene.2007.11.031
|
[1] | Han Xiaoxiang, Li Jun, Zhang Xin, Yuan Lin, Liu Yang, Wang Boyu. Simulation research on energy distribution of light radiation from nuclear explosion[J]. High Power Laser and Particle Beams, 2024, 36(7): 076003. doi: 10.11884/HPLPB202436.230406 |
[2] | Xu Zhiyong, Liu Jialei, Chen Yuqing, Wang Haifeng. Numerical simulation of hydrogen distribution characteristics in reactor space under severe accident[J]. High Power Laser and Particle Beams, 2023, 35(10): 106001. doi: 10.11884/HPLPB202335.230093 |
[3] | Pan Nana, Pan Yanqiu, Yu Lu, Jia Chunyan, Xu Zhi, Liu Wanfa, Sang Fengting. Numerical simulation of flow and heat transfer characteristics in microchannel cooler[J]. High Power Laser and Particle Beams, 2016, 28(02): 021002. doi: 10.11884/HPLPB201628.021002 |
[4] | Gao Libo, Zhang Qiang, Xu Hongyan, Diwu Jiangtao, Li Junyang, Zhang Zhibo, Xue Chenyang. Photocatalytic activity of carbon-incorporated octahedral Co3O4[J]. High Power Laser and Particle Beams, 2015, 27(02): 024140. doi: 10.11884/HPLPB201527.024140 |
[5] | Duan Shuchao, Kan Mingxian, Wang Ganghua, Xie Weiping. Relaxation magnetohydrodynamics model for the computation of an electromagnetically driven vacuum-plasma system[J]. High Power Laser and Particle Beams, 2015, 27(06): 065002. doi: 10.11884/HPLPB201527.065002 |
[6] | Shen Shuangyan, Jin Xing. Numerical simulation of MHD magnetic control inlet flow field distribution[J]. High Power Laser and Particle Beams, 2015, 27(12): 124008. doi: 10.11884/HPLPB201527.124008 |
[7] | Li Yong, Gong Ding, Xuan Chun, Xia Hongfu, Xie Haiyan, Wang Jianguo. Error analysis of drift-diffusion model of semiconductor device numerical simulation[J]. High Power Laser and Particle Beams, 2014, 26(06): 063204. doi: 10.11884/HPLPB201426.063204 |
[8] | Lu Peng, Pan Yanqiu, Yu Lu, Han Xinmin, Gong Faquan, Liu Wanfa, Sang Fengting. Numerical simulation of flow characteristic in solid-state laser microchannel cooler[J]. High Power Laser and Particle Beams, 2014, 26(05): 051008. doi: 10.11884/HPLPB201426.051008 |
[9] | Tang Mi, Liu Cangli, Li Ping, Zhong Min, Bai Jinsong, Xie Long. Numerical simulation of phase distribution of debris cloud generated by hypervelocity impact[J]. High Power Laser and Particle Beams, 2012, 24(09): 2203-2206. doi: 10.3788/HPLPB20122409.2203 |
[10] | Li Jing, Yang Libing, Huang Xianbin, Xie Weiping, Duan Shuchao. Numerical modeling of Z-pinch wire array ablation with a simple model[J]. High Power Laser and Particle Beams, 2012, 24(01): 84-88. |
[11] | li linbo, lu xingqiang, cao huabao, li zhenghong, xu rongkun, yang jianlun. Simulation analysis for backward-reflected laser in high power laser amplifier[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- . |
[12] | zhang ligang, ning hui, shao hao, chen changhua, song zhimin. Numerical simulation for characteristics of open-ended rectangular waveguide[J]. High Power Laser and Particle Beams, 2009, 21(04): 0- . |
[13] | qin jianguo, wang dalun, lai caifeng. Influence of characteristic X-ray of impurity element on anonymous spectral lines excited by hydrogen gas discharge source bombarding targets[J]. High Power Laser and Particle Beams, 2009, 21(07): 0- . |
[14] | ma qing-li, tang shi-biao, zou ji-wei. Numerical simulation of distribution of recoil proton in plastic scintillating fiber irradiated by high-energy neutron[J]. High Power Laser and Particle Beams, 2008, 20(07): 0- . |
[15] | tian dong-bin, yuan xiao-dong, zu xiao-tao, wang bi-yi, xu shi-zhen, guo yuan-jun, jiang xiao-dong, li xu-ping, zheng wan-guo. Numerical simulation of light intensity distribution in vicinity of defect on fused silica subsurface[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- . |
[16] | su hua, li shou-xian. Two-phase model of jet singlet oxygen generator[J]. High Power Laser and Particle Beams, 2007, 19(02): 0- . |
[17] | xue she-sheng, li shou-xian, shu xiao-jian. Simulation of 3D chemical oxygen-iodine laser nozzle-flows with nitrogen diluent[J]. High Power Laser and Particle Beams, 2007, 19(03): 0- . |
[18] | xue she-sheng, li shou-xian, shu xiao-jian. Numerical simulation of COIL supersonic flows with vapor condensation[J]. High Power Laser and Particle Beams, 2007, 19(11): 0- . |
[19] | zhang fa-qiang, yang jian-lun, li zheng-hong, chen fa-xin, ying chun-tong, liu guang-jun. Numerical simulation of high energy neutron radiography[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- . |
[20] | qin ying, wu ai-min, zou jian-xin, hao sheng-zhi, liu yue, wang xiao-gang, dong chuang. Physical model and numerical simulation of intense pulsed electron beam surface modification[J]. High Power Laser and Particle Beams, 2003, 15(07): 0- . |
1. | 周文超,魏千翯,彭琛,黄德权,朱日宏. 2.7~3.0μm波段高反镜反射率测量研究. 强激光与粒子束. 2024(01): 101-106 . ![]() | |
2. | 陶蒙蒙,马连英,黄超,朱峰,黄珂,沈炎龙,谌鸿伟,栾昆鹏,赵柳,李高鹏,易爱平. 吸附条件对重频运转的焦级非链式脉冲HF激光器输出能量的影响. 现代应用物理. 2019(04): 34-39 . ![]() |