Volume 32 Issue 7
Jun.  2020
Turn off MathJax
Article Contents
Hu Xianggang, Su Jiancang, Zhang Yu, et al. Influence of metal surface electrodeposited polymer film on threshold of vacuum breakdown[J]. High Power Laser and Particle Beams, 2020, 32: 075002. doi: 10.11884/HPLPB202032.190439
Citation: Hu Xianggang, Su Jiancang, Zhang Yu, et al. Influence of metal surface electrodeposited polymer film on threshold of vacuum breakdown[J]. High Power Laser and Particle Beams, 2020, 32: 075002. doi: 10.11884/HPLPB202032.190439

Influence of metal surface electrodeposited polymer film on threshold of vacuum breakdown

doi: 10.11884/HPLPB202032.190439
  • Received Date: 2019-11-28
  • Rev Recd Date: 2020-04-20
  • Publish Date: 2020-06-24
  • It is of great significance for the development and application of pulse power technology to explore ways to improve the vacuum breakdown threshold of metal surface. Based on the theoretical analysis of electron on metal surface, the variation of surface electric field of cathode rod with diode voltage is calculated by finite element method. Experimental system is designed and experimental research is carried out. The experiment compares the vacuum breakdown threshold of TC4 of titanium alloy under different kinds of dielectric films (film thickness 30−60 μm), when the pulse width is about 30 ns and the gap between cathode rod and anode tube is 12 mm. The TC4 cathode rods with a surface roughness Rz (maximum outline height) of 0.8 μm are plated with epoxy resin and acrylic acid film respectively. The experimental results show that the breakdown threshold of the acrylic acid coated cathode rod is about 505 kV/cm. Compared with the uncoated cathode rod, the breakdown field strength is increased by about 20.6%; The TC4 cathode rods with surface roughness Rz of 0.2 μm are plated with polyimide film and polyether-ether-ketol film respectively. The experimental results show that the breakdown threshold of the polyimide film coated rod is about 584 kV/cm. The breakdown field strength is enhanced by approximately 28.1%, relative to the non-coated cathode rod. Therefore, coating acrylic acid film and polyimide film on the surface of metal cathode rod can effectively improve the vacuum breakdown threshold of metal rod.
  • loading
  • [1]
    Rozanova N, Granovsky V L. On the initiation of electrical breakdown of a high voltage gap[J]. Sov Phys Tech Phys, 1956, 1: 471-478.
    [2]
    Bouchard K G. Vacuum breakdown voltages of dispersion-strengthened copper vs oxygen-free, high-conductivity copper[J]. Journal of Vacuum Science and Technology, 1970, 7(2): 358-360. doi: 10.1116/1.1315857
    [3]
    Spolaore P, Bisoffi G, Cervellera F, et al. The large gap case for HV insulation in vacuum[J]. IEEE Trans Dielectrics and Electrical Insulation, 1997, 4(4): 389-393. doi: 10.1109/94.625353
    [4]
    米夏兹. 真空放电物理和高功率脉冲技术[M]. 北京: 国防工业出版社, 2007.

    Mesyats. Vacuum discharge and high power pulse technology[M]. Beijing: National Defense Industry Press, 2007
    [5]
    左应红, 王建国, 范如玉. 二极管间隙距离对场致发射过程中空间电荷效应的影响[J]. 物理学报, 2012, 61:215202. (Zuo Yinghong, Wang Jianguo, Fan Ruyu. Influence of diode gap distance on space charge effects in field emission[J]. Acta Physica Sinica, 2012, 61: 215202 doi: 10.7498/aps.61.215202
    [6]
    左应红. 场致爆炸电子发射的理论分析与数值模拟[D]. 北京: 清华大学. 2014.

    Zuo Yinghong. Theory analysis and numerical simulation of field-induced explosive electron emission[D]. Beijing: Tsinghua University, 2014
    [7]
    Zhang Yingyao, Xu Xinye, Jin Lijun, et al. Fractal-based electric field enhancement modeling of vacuum gap electrodes[J]. IEEE Trans Dielectrics and Electrical Insulation, 2017, 24(3): 1957-1963. doi: 10.1109/TDEI.2017.006364
    [8]
    Almaksour K, Kirkpatrick M J, Odic E, et al. Cathode surface morphology effects on field emission: vacuum breakdown creation of field emitters[J]. IEEE Trans Plasma Science, 2014, 42(10): 2582-2583. doi: 10.1109/TPS.2014.2319393
    [9]
    黄子平, 何佳龙, 陈思富, 等. 高压多脉冲真空间隙击穿实验研究[J]. 强激光与粒子束, 2008, 20(11):1903-1907. (Huang Ziping, He Jialong, Chen Sifu, et al. Experimental research for vacuum gap breakdown in high voltage multi-pulse[J]. High Power Laser and Particle Beams, 2008, 20(11): 1903-1907
    [10]
    孙钧, 刘国治, 林郁正, 等. 阴极金属微凸起电场增强因子数值模拟[J]. 强激光与粒子束, 2005, 17(8):1183-1186. (Sun Jun, Liu Guozhi, Lin Yuzheng, et al. Numerical simulation of electric field enhancement factor of metallic microprotrusion[J]. High Power Laser and Particle Beams, 2005, 17(8): 1183-1186
    [11]
    张余川, 孙钧, 邵浩, 等. 抑制表面场增强提高相对论返波管功率容量[J]. 强激光与粒子束, 2016, 28:033019. (Zhang Yuchuan, Sun Jun, Shao Hao, et al. Suppression of surface field enhancement to improve power capacity of RBWO[J]. High Power Laser and Particle Beams, 2016, 28: 033019 doi: 10.11884/HPLPB201628.033019
    [12]
    Zhang Yu, Su Jiancang, Qiu Xudong, et al. The effects of cathode electrodeposited polymer film on the long vacuum gap breakdown[J]. EPJ Applied Physics, 2018, 82: 21301. doi: 10.1051/epjap/2018170324
    [13]
    Miller R B. 强流带电粒子束物理学导论[M]. 北京: 原子能出版社, 1990.

    Miller R. B. Introduction to the physics of strongly charged particle beams[M]. Beijing: Atomic Energy Press, 1990
    [14]
    傅慈海. 物理电子技术原理[M]. 广州: 华南理工大学出版社, 1991.

    Fu Cihai. Physical electronic technical principles[M]. Guangzhou: South China University of Technology Press, 1991
    [15]
    俞永波, 杨兰兰, 屠彦. 电极表面形态对真空击穿特性的影响[J]. 电子器件, 2014, 37(3):385-389. (Yu Yongbo, Yang Lanlan, Tu Yan. Investigation of the electrodes’ surface to vacuum breakdown[J]. Chinese Journal of Electron Devices, 2014, 37(3): 385-389 doi: 10.3969/j.issn.1005-9490.2014.03.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (1368) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return