Chen Zhiqiang, Xie Linshen, Jia Wei, et al. Development of a 3 MV transfer capacitor used in an electromagnetic pulse simulator[J]. High Power Laser and Particle Beams, 2021, 33: 095001. doi: 10.11884/HPLPB202133.210195
Citation: Wang Lili, Du Zhonghong, Yang Hailong, et al. Dual band-notch ultra-wideband multiple-input multiple-output antenna with high isolation[J]. High Power Laser and Particle Beams, 2020, 32: 063007. doi: 10.11884/HPLPB202032.190443

Dual band-notch ultra-wideband multiple-input multiple-output antenna with high isolation

doi: 10.11884/HPLPB202032.190443
  • Received Date: 2019-12-02
  • Rev Recd Date: 2020-03-16
  • Publish Date: 2020-05-12
  • This paper presents an ultra-wideband (UWB) multiple-input multiple-output (MIMO) antenna, which has high isolation and double band-notch in the UWB band. The MIMO antenna consists of two half-cutting UWB antenna units which have high isolation (S21>25 dB) because of the use of a novel fence-type decoupling structure on the bottom plate of the antenna. In addition, two “L”shaped slots are etched on the antenna radiation patch, and the characteristic of the double band-notch are realized. The interference of the 802.16 WiMAX (3.2−3.7 GHz) and the WLAN (5.15−5.85 GHz) signal to the antenna system is suppressed, respectively. The experimental results show that the antenna has high isolation and a low envelope correlation coefficient (ECC<0.004) in the UWB band. The first notch band is 3.0−3.7 GHz and the second notch band is 5.1−5.8 GHz, which effectively suppresses the interference of WiMAX and WLAN signals.
  • [1]
    Kaiser F Z T. Ultra-wideband systems with MIMO[M]. Hoboken: Wiley, 2010.
    [2]
    Oppermann I, Hamalainen M, Iinatti J. UWB theory and applications[M]. New York: Wiley, 2004: 3-4.
    [3]
    Wei Kunpeng, Zhang Zhijun, Chen Wenhua, et al. A novel hybrid-fed patch antenna with pattern diversity[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 562-565. doi: 10.1109/LAWP.2010.2051402
    [4]
    Kaiser T, Feng Zheng, Dimitrov E. An overview of ultra-wideband systems with MIMO[J]. Proceedings of the IEEE, 2009, 97(2): 285-312. doi: 10.1109/JPROC.2008.2008784
    [5]
    Balanis C A. Antenna theory: Analysis and design[M]. 2nd. New York: John Wiley & Sons, 1996.
    [6]
    娄树勇, 高海涛, 许会芳. 共面波导馈电的三陷波超宽带天线的设计[J]. 压电与声光, 2019, 41(1):167-170. (Lou Shuyong, Gao Haitao, Xu Huifang. Design of a CPW fed UWB antenna with triple-band notch[J]. Piezoelectric & Acoustooptics, 2019, 41(1): 167-170
    [7]
    杜成珠, 马天驰, 焦哲晶. 一种高隔离度的双阻带超宽带MIMO天线设计[J]. 电子元件与材料, 2019(9):71-76. (Du Chengzhu, Ma Tianchi, Jiao Zhejing. Design of a high isolation dual band-notched UWB-MIMO antenna[J]. Electronic Components and Materials, 2019(9): 71-76
    [8]
    Eltrass A S, Elborae A N. New design of UWB-MIMO antenna with enhanced isolation and dual-band rejection for WiMAX and WLAN systems[J]. IET Microwaves, Antennas & Propagation, 2019, 13(5): 683-691.
    [9]
    Tiwari R N, Singh P, Kanaujia B K. A compact UWB MIMO antenna with neutralization line for WLAN/ISM/mobile applications[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29(11): 1-9.
    [10]
    Zhang Shui, Pedersen G F. Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 166-169. doi: 10.1109/LAWP.2015.2435992
    [11]
    Devana V N K R, Rao A M. Compact UWB monopole antenna with quadruple band notched characteristics[J]. International Journal of Electronics, 2019(3).
    [12]
    Ibrahim, A A, Machac J, Shubair R M. Compact UWB MIMO antenna with pattern diversity and band rejection characteristics[J]. Microwave and Optical Technology Letters, 2017, 59(6): 1460-1464. doi: 10.1002/mop.30564
    [13]
    Banerjee J, Karmakar A, Ghatak R, et al. Compact CPW-fed UWB MIMO antenna with a novel modified Minkowski fractal defected ground structure (DGS) for high isolation and triple band-notch characteristic[J]. Journal of Electromagnetic Waves and Applications, 2017, 31(15): 1550-1565. doi: 10.1080/09205071.2017.1354727
    [14]
    Chu Qingxin, Wu Yuting. Dual-band multiple input multiple output antenna with slitted ground[J]. IET Microwaves, Antennas & Propagation, 2014, 8(13): 1007-1013.
    [15]
    Raheja D K, Kanaujia B K, Kumar S. Compact four-port MIMO antenna on slotted-edge substrate with dual-band rejection characteristics[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2019: e21756.
    [16]
    Gogosh N, Shafique M F, Saleem R, et al. An UWB diversity antenna array with a novel H-type decoupling structure[J]. Microwave and Optical Technology Letters, 2013, 55(11): 2715-2720. doi: 10.1002/mop.27941
    [17]
    Sun Mei, Zhang Yueping, Lu Yilong. Miniaturization of planar monopole antenna for ultrawideband radios[J]. IEEE Trans Antennas and Propagation, 2010, 58(7): 2420-2425. doi: 10.1109/TAP.2010.2048851
    [18]
    Wu Ling, Xia Yingqing, Cao Xia, et al. A miniaturized UWB-MIMO antenna with quadruple band-notched characteristics[J]. International Journal of Microwave and Wireless Technologies, 2018, 10(8): 948-955. doi: 10.1017/S1759078718000508
    [19]
    Mobashsher A T, Abbosh A. Utilizing symmetry of planar ultra-wideband antennas for size reduction and enhanced performance[J]. IEEE Antennas and Propagation Magazine, 2015, 57(2): 153-166. doi: 10.1109/MAP.2015.2414488
    [20]
    Liu Jianjun, Esselle K. Hay P S G, et al. Effects of printed UWB antenna miniaturization on pulse fidelity and pattern stability[J]. IEEE Trans Antennas and Propagation, 2014, 62(8): 3903-3910. doi: 10.1109/TAP.2014.2322885
    [21]
    Khan M S, Capobianco A, Najam A I, et al. Compact ultra-wideband diversity antenna with a floating parasitic digitated decoupling structure[J]. IET Microwaves, Antennas & Propagation, 2014, 8(10): 747-753.
  • Relative Articles

    [1]Wang Xiangyu, Lu Yanlei, Zhu Yufeng, Fang Xu, Qiao Hanqing, Zhang Xingjia. Design and development of compact high power subnanosecond pulse compression device[J]. High Power Laser and Particle Beams, 2023, 35(2): 025006. doi: 10.11884/HPLPB202335.220254
    [2]Lian Yudong, Wang Yuhe, Zhang Yuqin, Han Shiwei, Yu Yang, Qi Xuan, Luan Nannan, Bai Zhenxu, Wang Yulei, Lü Zhiwei. Research progress of stimulated Brillouin scattering pulse compression technique[J]. High Power Laser and Particle Beams, 2021, 33(5): 051001. doi: 10.11884/HPLPB202133.210006
    [3]Xiong Zhengfeng, Ning Hui, Chen Huaibi, Cheng Cheng. Design and experiment of microwave pulse compressor with adjustable coupling coefficient[J]. High Power Laser and Particle Beams, 2018, 30(7): 073001. doi: 10.11884/HPLPB201830.170469
    [4]Zhang Xingjia, Lu Yanlei, Fan Yajun, Shi Lei, Xia Wenfeng, Qiao Hanqing. Triple transmission line type subnanosecond pulse-compression device[J]. High Power Laser and Particle Beams, 2017, 29(11): 115002. doi: 10.11884/HPLPB201729.170101
    [5]Shi Lei, Zhu Yufeng, Lu Yanlei, Xia Wenfeng, Qiao Hanqing, Yi Chaolong, Fan Yajun. Pulse compression based on pulse forming line charging techonlogy[J]. High Power Laser and Particle Beams, 2015, 27(06): 065003. doi: 10.11884/HPLPB201527.065003
    [6]Zhu Yufeng, Shi Lei, Fan Yajun, Xia Wenfeng. Application of forming-line pulse-compression in ultra-wide-spectrum technology[J]. High Power Laser and Particle Beams, 2013, 25(09): 2448-2452. doi: 10.3788/HPLPB20132509.2448
    [7]qian guolin, wu jianhong, li chaoming. Laser pulse pattern influenced by mosaic grating gap[J]. High Power Laser and Particle Beams, 2011, 23(12): 5-6.
    [8]liang qinjin, shi xiaoyan, pan wenwu. High voltage semiconductor fast ionization device and its properties of pulse compression[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [9]jiang weihua. High repetition-rate pulsed power generation using solid-state switches[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- .
    [10]guo qi, lü zhiwei, zhu chengyu. High-quality pulse shape realized in two-step stimulated Brillouin scattering pulse compression system[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [11]gao zhixing, tang xiuzhang, zhang haifeng, xiang yihuai. Excimer laser pulse compressed with pulse feedback[J]. High Power Laser and Particle Beams, 2009, 21(08): 0- .
    [12]cheng xin-bing, liu jin-liang, chen zhen, yin yi, feng jia-huai. Design and primary experiment of high voltage long-life gas spark switch[J]. High Power Laser and Particle Beams, 2008, 20(10): 0- .
    [13]zhu zhong-ming, wang xu-ben, zhang shuang-shi. Study of exploration capability of pseudo-random code UWB short pulse[J]. High Power Laser and Particle Beams, 2006, 18(11): 0- .
    [14]zhang zhi-qiang, fang jin-yong, hao wen-xi, qiu shi, ning hui. Numerical simulation and optimization design of X-band pulse compression equipment[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [15]liu wen-bing, zhu qi-hua, feng guo-ying, wang xiao, wang fang. Effects of non-parallel grating pair on pulse space-time profiles[J]. High Power Laser and Particle Beams, 2005, 17(10): 0- .
    [16]xie su-long, meng fan-bao, ma hong-ge. Effects of gas switch on power gain in pulse compressed system[J]. High Power Laser and Particle Beams, 2005, 17(06): 0- .
    [17]zhang wei, wu jian-hong, li chao-ming. Effect of wavefront aberration of grating on pulse compression[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- .
    [18]wang chao, lzhi-wei, he wei-ming. Picosecond pulse generation by stimulated Brillouin scattering compressor[J]. High Power Laser and Particle Beams, 2003, 15(12): 0- .
    [19]ning hui, fang jin-yong, li ping, liu jing-yue, liu guo-zhi, xiao li-lin, tong de-chun, lin yu-zheng, . Experiment research on HPM pulse compression[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- .
  • Cited by

    Periodical cited type(5)

    1. 陈俊宏,肖东华,熊玉珍,王英翘,陈小昌,宣伟民,戢洋. kA级双阶梯脉冲电源方案设计与分析. 强激光与粒子束. 2024(02): 90-96 . 本站查看
    2. 贾伟,陈志强,吴伟,郭帆,谢霖燊,吴刚,梅锴盛,程乐,肖晶,孙楚昱,朱湘琴,陈伟. 3.8MV快前沿电磁脉冲模拟器脉冲驱动源研制. 现代应用物理. 2024(01): 112-117 .
    3. 吴刚,贾伟,王海洋,谢霖燊,陈志强,郭帆,吴伟,冯寒亮. 高空核电磁脉冲模拟器研制进展. 中国科学:物理学 力学 天文学. 2023(07): 97-109 .
    4. 赵亮,李锐,程杰,邱旭东,喻斌雄,尚蔚,高明珠. 脉冲功率装置中混合绝缘结构设计方法. 现代应用物理. 2022(04): 109-115+122 .
    5. 邓珀昆,林楷宣,罗秋燕,龙井华,王东,雷云飞,黄峻堃,王勇,蔡厚智,刘进元. 基于晶闸管的大电流脉冲发生器研制. 强激光与粒子束. 2021(11): 178-183 . 本站查看

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.1 %FULLTEXT: 16.1 %META: 80.2 %META: 80.2 %PDF: 3.7 %PDF: 3.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 38.1 %其他: 38.1 %其他: 0.1 %其他: 0.1 %China: 1.2 %China: 1.2 %India: 0.0 %India: 0.0 %Iran (ISLAMIC Republic Of): 0.2 %Iran (ISLAMIC Republic Of): 0.2 %Japan: 0.2 %Japan: 0.2 %Koesan: 0.0 %Koesan: 0.0 %United States: 0.1 %United States: 0.1 %[]: 0.5 %[]: 0.5 %上海: 2.9 %上海: 2.9 %东莞: 0.1 %东莞: 0.1 %中山: 0.2 %中山: 0.2 %临汾: 0.1 %临汾: 0.1 %丹东: 0.0 %丹东: 0.0 %保定: 0.1 %保定: 0.1 %兰州: 0.3 %兰州: 0.3 %北京: 2.5 %北京: 2.5 %南京: 0.6 %南京: 0.6 %南昌: 0.2 %南昌: 0.2 %台州: 0.1 %台州: 0.1 %合肥: 0.2 %合肥: 0.2 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.0 %哈尔滨: 0.0 %哈尔科夫: 0.2 %哈尔科夫: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %商洛: 0.1 %商洛: 0.1 %嘉兴: 0.0 %嘉兴: 0.0 %圣保罗: 0.1 %圣保罗: 0.1 %大连: 0.0 %大连: 0.0 %天津: 0.1 %天津: 0.1 %奥卢: 0.1 %奥卢: 0.1 %安康: 0.1 %安康: 0.1 %宣城: 0.2 %宣城: 0.2 %宿州: 0.1 %宿州: 0.1 %平凉: 0.2 %平凉: 0.2 %广州: 0.1 %广州: 0.1 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %张家口: 0.2 %张家口: 0.2 %成都: 0.7 %成都: 0.7 %扬州: 0.1 %扬州: 0.1 %新乡: 0.1 %新乡: 0.1 %新奥尔良: 0.0 %新奥尔良: 0.0 %无锡: 0.1 %无锡: 0.1 %昆明: 0.3 %昆明: 0.3 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 0.4 %杭州: 0.4 %梅州: 0.0 %梅州: 0.0 %榆林: 0.0 %榆林: 0.0 %武汉: 0.2 %武汉: 0.2 %汉中: 0.1 %汉中: 0.1 %沈阳: 0.1 %沈阳: 0.1 %法兰西岛大区: 0.3 %法兰西岛大区: 0.3 %泰州: 0.1 %泰州: 0.1 %济南: 0.1 %济南: 0.1 %淮安: 0.0 %淮安: 0.0 %深圳: 0.3 %深圳: 0.3 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %漯河: 0.1 %漯河: 0.1 %烟台: 0.0 %烟台: 0.0 %眉山: 0.1 %眉山: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.0 %福州: 0.0 %秦皇岛: 0.0 %秦皇岛: 0.0 %纽瓦克: 0.0 %纽瓦克: 0.0 %绵阳: 0.3 %绵阳: 0.3 %艾因: 0.2 %艾因: 0.2 %芒廷维尤: 12.6 %芒廷维尤: 12.6 %芝加哥: 0.0 %芝加哥: 0.0 %苏州: 0.0 %苏州: 0.0 %衡水: 0.0 %衡水: 0.0 %衢州: 0.2 %衢州: 0.2 %西宁: 26.2 %西宁: 26.2 %西安: 3.2 %西安: 3.2 %西雅图: 0.1 %西雅图: 0.1 %贵阳: 0.2 %贵阳: 0.2 %费利蒙: 0.0 %费利蒙: 0.0 %贺州: 0.0 %贺州: 0.0 %资阳: 0.1 %资阳: 0.1 %运城: 0.9 %运城: 0.9 %邯郸: 0.0 %邯郸: 0.0 %郑州: 1.0 %郑州: 1.0 %郴州: 0.2 %郴州: 0.2 %重庆: 0.4 %重庆: 0.4 %长春: 0.0 %长春: 0.0 %长沙: 0.3 %长沙: 0.3 %长治: 0.1 %长治: 0.1 %门尼菲: 0.2 %门尼菲: 0.2 %阳泉: 0.0 %阳泉: 0.0 %阿什本: 0.0 %阿什本: 0.0 %阿拉善盟: 0.2 %阿拉善盟: 0.2 %青岛: 0.1 %青岛: 0.1 %驻马店: 0.0 %驻马店: 0.0 %其他其他ChinaIndiaIran (ISLAMIC Republic Of)JapanKoesanUnited States[]上海东莞中山临汾丹东保定兰州北京南京南昌台州合肥呼和浩特哈尔滨哈尔科夫哥伦布商洛嘉兴圣保罗大连天津奥卢安康宣城宿州平凉广州库比蒂诺张家口成都扬州新乡新奥尔良无锡昆明晋城普洱朝阳杭州梅州榆林武汉汉中沈阳法兰西岛大区泰州济南淮安深圳温州渭南漯河烟台眉山石家庄福州秦皇岛纽瓦克绵阳艾因芒廷维尤芝加哥苏州衡水衢州西宁西安西雅图贵阳费利蒙贺州资阳运城邯郸郑州郴州重庆长春长沙长治门尼菲阳泉阿什本阿拉善盟青岛驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article views (2180) PDF downloads(63) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return