He An, Guo Fan, Kang Junjun, et al. Trigger system of the middle energy X-ray device[J]. High Power Laser and Particle Beams, 2022, 34: 115001. doi: 10.11884/HPLPB202234.220170
Citation: Wang Lili, Du Zhonghong, Yang Hailong, et al. Dual band-notch ultra-wideband multiple-input multiple-output antenna with high isolation[J]. High Power Laser and Particle Beams, 2020, 32: 063007. doi: 10.11884/HPLPB202032.190443

Dual band-notch ultra-wideband multiple-input multiple-output antenna with high isolation

doi: 10.11884/HPLPB202032.190443
  • Received Date: 2019-12-02
  • Rev Recd Date: 2020-03-16
  • Publish Date: 2020-05-12
  • This paper presents an ultra-wideband (UWB) multiple-input multiple-output (MIMO) antenna, which has high isolation and double band-notch in the UWB band. The MIMO antenna consists of two half-cutting UWB antenna units which have high isolation (S21>25 dB) because of the use of a novel fence-type decoupling structure on the bottom plate of the antenna. In addition, two “L”shaped slots are etched on the antenna radiation patch, and the characteristic of the double band-notch are realized. The interference of the 802.16 WiMAX (3.2−3.7 GHz) and the WLAN (5.15−5.85 GHz) signal to the antenna system is suppressed, respectively. The experimental results show that the antenna has high isolation and a low envelope correlation coefficient (ECC<0.004) in the UWB band. The first notch band is 3.0−3.7 GHz and the second notch band is 5.1−5.8 GHz, which effectively suppresses the interference of WiMAX and WLAN signals.
  • [1]
    Kaiser F Z T. Ultra-wideband systems with MIMO[M]. Hoboken: Wiley, 2010.
    [2]
    Oppermann I, Hamalainen M, Iinatti J. UWB theory and applications[M]. New York: Wiley, 2004: 3-4.
    [3]
    Wei Kunpeng, Zhang Zhijun, Chen Wenhua, et al. A novel hybrid-fed patch antenna with pattern diversity[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 562-565. doi: 10.1109/LAWP.2010.2051402
    [4]
    Kaiser T, Feng Zheng, Dimitrov E. An overview of ultra-wideband systems with MIMO[J]. Proceedings of the IEEE, 2009, 97(2): 285-312. doi: 10.1109/JPROC.2008.2008784
    [5]
    Balanis C A. Antenna theory: Analysis and design[M]. 2nd. New York: John Wiley & Sons, 1996.
    [6]
    娄树勇, 高海涛, 许会芳. 共面波导馈电的三陷波超宽带天线的设计[J]. 压电与声光, 2019, 41(1):167-170. (Lou Shuyong, Gao Haitao, Xu Huifang. Design of a CPW fed UWB antenna with triple-band notch[J]. Piezoelectric & Acoustooptics, 2019, 41(1): 167-170
    [7]
    杜成珠, 马天驰, 焦哲晶. 一种高隔离度的双阻带超宽带MIMO天线设计[J]. 电子元件与材料, 2019(9):71-76. (Du Chengzhu, Ma Tianchi, Jiao Zhejing. Design of a high isolation dual band-notched UWB-MIMO antenna[J]. Electronic Components and Materials, 2019(9): 71-76
    [8]
    Eltrass A S, Elborae A N. New design of UWB-MIMO antenna with enhanced isolation and dual-band rejection for WiMAX and WLAN systems[J]. IET Microwaves, Antennas & Propagation, 2019, 13(5): 683-691.
    [9]
    Tiwari R N, Singh P, Kanaujia B K. A compact UWB MIMO antenna with neutralization line for WLAN/ISM/mobile applications[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29(11): 1-9.
    [10]
    Zhang Shui, Pedersen G F. Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 166-169. doi: 10.1109/LAWP.2015.2435992
    [11]
    Devana V N K R, Rao A M. Compact UWB monopole antenna with quadruple band notched characteristics[J]. International Journal of Electronics, 2019(3).
    [12]
    Ibrahim, A A, Machac J, Shubair R M. Compact UWB MIMO antenna with pattern diversity and band rejection characteristics[J]. Microwave and Optical Technology Letters, 2017, 59(6): 1460-1464. doi: 10.1002/mop.30564
    [13]
    Banerjee J, Karmakar A, Ghatak R, et al. Compact CPW-fed UWB MIMO antenna with a novel modified Minkowski fractal defected ground structure (DGS) for high isolation and triple band-notch characteristic[J]. Journal of Electromagnetic Waves and Applications, 2017, 31(15): 1550-1565. doi: 10.1080/09205071.2017.1354727
    [14]
    Chu Qingxin, Wu Yuting. Dual-band multiple input multiple output antenna with slitted ground[J]. IET Microwaves, Antennas & Propagation, 2014, 8(13): 1007-1013.
    [15]
    Raheja D K, Kanaujia B K, Kumar S. Compact four-port MIMO antenna on slotted-edge substrate with dual-band rejection characteristics[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2019: e21756.
    [16]
    Gogosh N, Shafique M F, Saleem R, et al. An UWB diversity antenna array with a novel H-type decoupling structure[J]. Microwave and Optical Technology Letters, 2013, 55(11): 2715-2720. doi: 10.1002/mop.27941
    [17]
    Sun Mei, Zhang Yueping, Lu Yilong. Miniaturization of planar monopole antenna for ultrawideband radios[J]. IEEE Trans Antennas and Propagation, 2010, 58(7): 2420-2425. doi: 10.1109/TAP.2010.2048851
    [18]
    Wu Ling, Xia Yingqing, Cao Xia, et al. A miniaturized UWB-MIMO antenna with quadruple band-notched characteristics[J]. International Journal of Microwave and Wireless Technologies, 2018, 10(8): 948-955. doi: 10.1017/S1759078718000508
    [19]
    Mobashsher A T, Abbosh A. Utilizing symmetry of planar ultra-wideband antennas for size reduction and enhanced performance[J]. IEEE Antennas and Propagation Magazine, 2015, 57(2): 153-166. doi: 10.1109/MAP.2015.2414488
    [20]
    Liu Jianjun, Esselle K. Hay P S G, et al. Effects of printed UWB antenna miniaturization on pulse fidelity and pattern stability[J]. IEEE Trans Antennas and Propagation, 2014, 62(8): 3903-3910. doi: 10.1109/TAP.2014.2322885
    [21]
    Khan M S, Capobianco A, Najam A I, et al. Compact ultra-wideband diversity antenna with a floating parasitic digitated decoupling structure[J]. IET Microwaves, Antennas & Propagation, 2014, 8(10): 747-753.
  • Relative Articles

    [1]Wang Jie, Chen Lin, Feng Yuanwei, Jiang Jihao, Zhao Yue, Liu Hongwei, Han Wenhui, Zhou Liangji. Influence of isolation element in trigger circuit on synchronization of multiple switches[J]. High Power Laser and Particle Beams, 2025, 37(3): 035023. doi: 10.11884/HPLPB202537.240371
    [2]Li Helong, Xu Jian, Yang Zhiqing, Song Jiahao, Wu Zhouyu, Tang Yihui, Zhao Shuang, Ding Lijian. Design of high-power repetitive pulse laser power supply[J]. High Power Laser and Particle Beams, 2024, 36(5): 055008. doi: 10.11884/HPLPB202436.240045
    [3]Zhou Liangji, He An, Ding Yu, Chen Lin, Wang Meng, Zhao Yue. Extendable high voltage trigger unit with 40 output cables[J]. High Power Laser and Particle Beams, 2018, 30(9): 095006. doi: 10.11884/HPLPB201830.170451
    [4]Lu Ze, Gao Zhixing, Hu Fengming. Pollution of lens in high pressure SF6 gas for high-voltage, high-current, laser triggered switch[J]. High Power Laser and Particle Beams, 2016, 28(01): 015011. doi: 10.11884/HPLPB201628.015011
    [5]Ma Chenggang, Li Xiqin, Li Yawei, Wu Lie. Development of 150 kV fast risetime low jitter Marx generator[J]. High Power Laser and Particle Beams, 2015, 27(04): 045001. doi: 10.11884/HPLPB201527.045001
    [6]Liang Tianxue, Sun Fengju, Jiang Xiaofeng, Wei Hao, Wang Zhiguo, Zhang Zhong, Qiu Aici. Influence study of FLTD stage output when switches discharge synchronous[J]. High Power Laser and Particle Beams, 2014, 26(10): 105001. doi: 10.11884/HPLPB201426.105001
    [7]Ding Mingjun, Li Xiqin, Ouyang Yanjing, Jia Xing, Huang Lei, Wu Hongguang. Design of 5 kHz repetition-rate trigger for hydrogen thyratron[J]. High Power Laser and Particle Beams, 2014, 26(04): 045026. doi: 10.11884/HPLPB201426.045026
    [8]Cong Peitian, Wu Hanyu, Sun Tieping, Li Yan, Lei Tianshi, Zeng Zhengzhong, Qiu Aici. Design of multi-gap rail gas switch and its performance test[J]. High Power Laser and Particle Beams, 2013, 25(04): 1059-1062.
    [9]Lu YanLei, Fan Yajun, Shi Lei, Wang Junjie, Xia Wenfeng. Laser-triggered synchronization experiment of GW-level nanosecond pulse sources[J]. High Power Laser and Particle Beams, 2012, 24(04): 975-979. doi: 10.3788/HPLPB20122404.0975
    [10]He An, Ren Ji, Feng Shuping, Xie Weiping, Wang Meng, Wei Bing, Ji Ce, Xia Minghe, Wang Yujuan, Fu Zhen, Li Yong, Wang Zhi, Yao Bin, Ding Yu. Laser triggering system for Z-pinch primary test stand[J]. High Power Laser and Particle Beams, 2012, 24(04): 839-842. doi: 10.3788/HPLPB20122404.0839
    [11]Zhang Xinjun, Wu Jian, Zhang Guowei, Wu Hanyu, Wang Liangping, Zeng ZhengZhong. Trigger system of laser triggered gas switch on Qiangguang-Ⅰ accelerator[J]. High Power Laser and Particle Beams, 2012, 24(03): 643-646. doi: 10.3788/HPLPB20122403.0643
    [12]liang tianxue, sun fengju, qiu aici, zeng jiangtao, liu xuandong, jiang xiaofeng, liu zhigang, yin jiahui, zhang zhong, . Influence of trigger voltage on ± 100 kV multi-gap multi-channel switch performance[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- .
    [13]wang chuan, lu ze, wang jianzhong, zhang tianjue, jiang xingdong. Simulation of laser triggered gas switch with cylindrical electrodes on pre-breakdown stage[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [14]wei bing, qing yanling, li hongtao, wang yujuan, fu zhen, he an, feng shuping. Uncertainty in delay and jitter measurement of laser-triggered switch[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [15]wei bing, liu qineng, fu zhen, wang yujuan, qing yanling, gu yuanchao, li hongtao, feng shuping. Voltage and current measurement of laser-triggered switch[J]. High Power Laser and Particle Beams, 2009, 21(03): 0- .
    [16]yang jian-jun, zhou xiao-jun, guo wen-qiong, zhang xiong-jun, sui zhan, wu deng-sheng. Method to reduce breakdown time delay and jitter of large aperture electro-optic switch by one-pulse process[J]. High Power Laser and Particle Beams, 2008, 20(07): 0- .
    [17]du qiang, huang wen-hui, sun da-rui, dai jian-ping, tang chuan-xiang. Frequency stabilization of mode-locked laser for Thomson scattering X-ray source[J]. High Power Laser and Particle Beams, 2006, 18(03): 0- .
    [18]wu hui, wu jian qiang, guo xing kuan. rigger system development of a new type thyratron HY3202[J]. High Power Laser and Particle Beams, 2002, 14(04): 0- .
    [19]liu sheng guang, li yong gui, wang ming kai. Measurement method of time jitter between pump laser pulse and RF wave by the charge change in photoinjector[J]. High Power Laser and Particle Beams, 2002, 14(05): 0- .
    [20]li zheng-hong, hu ke-song. Investigation of laser pulse's timing jitter in RF photoinjector[J]. High Power Laser and Particle Beams, 2001, 13(01): 0- .
  • Cited by

    Periodical cited type(9)

    1. 冯现永. 基于小波分析的图书馆电子阅览设备故障检测方法. 自动化与仪器仪表. 2021(02): 46-49 .
    2. 杨敬,贾召会,龚梦彤,蔡伟,刘佳豪,王轩,樊艳春. 基于多信号流图的亚跨超声速风洞故障诊断方法. 计算机测量与控制. 2021(08): 67-71 .
    3. 苏健,吴秀. 半导体激光宫颈糜烂治疗仪故障在线监测研究. 自动化与仪器仪表. 2020(01): 146-149 .
    4. 冯晓晖. 基于激光定位的非线性故障检测系统. 激光杂志. 2020(01): 81-85 .
    5. 黄将. 数据中心光纤通信网络传输非平稳数据无损检测技术研究. 激光杂志. 2019(04): 131-135 .
    6. 邵健,庄泽旭. 医用激光相机设备故障快速检测系统设计. 激光杂志. 2019(05): 104-107 .
    7. 王艳阁. 光纤传感网络链路故障自修复系统设计. 激光杂志. 2018(03): 172-175 .
    8. 黄燕. 复杂复印机故障信号的检测与提取. 现代电子技术. 2018(22): 103-105+109 .
    9. 吴华芹. 基于机器学习的光纤故障数据信息快速排除方法. 激光杂志. 2018(12): 160-165 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.6 %FULLTEXT: 21.6 %META: 71.3 %META: 71.3 %PDF: 7.1 %PDF: 7.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.2 %其他: 4.2 %其他: 0.4 %其他: 0.4 %China: 0.1 %China: 0.1 %Rochester: 0.1 %Rochester: 0.1 %San Lorenzo: 2.2 %San Lorenzo: 2.2 %San Mateo: 0.1 %San Mateo: 0.1 %United States: 0.1 %United States: 0.1 %[]: 0.1 %[]: 0.1 %上海: 1.3 %上海: 1.3 %东莞: 0.1 %东莞: 0.1 %中山: 0.2 %中山: 0.2 %临汾: 0.2 %临汾: 0.2 %丹东: 0.1 %丹东: 0.1 %丽水: 0.2 %丽水: 0.2 %保定: 0.2 %保定: 0.2 %兰州: 0.4 %兰州: 0.4 %内江: 0.2 %内江: 0.2 %北京: 2.2 %北京: 2.2 %十堰: 0.1 %十堰: 0.1 %南京: 0.3 %南京: 0.3 %台州: 1.1 %台州: 1.1 %合肥: 0.2 %合肥: 0.2 %哈尔滨: 0.1 %哈尔滨: 0.1 %哈尔科夫: 1.0 %哈尔科夫: 1.0 %哥伦布: 0.4 %哥伦布: 0.4 %大连: 0.1 %大连: 0.1 %天津: 0.3 %天津: 0.3 %太原: 0.1 %太原: 0.1 %安康: 0.1 %安康: 0.1 %宜昌: 0.4 %宜昌: 0.4 %宣城: 0.4 %宣城: 0.4 %常州: 0.1 %常州: 0.1 %常德: 0.2 %常德: 0.2 %广州: 0.3 %广州: 0.3 %张家口: 0.8 %张家口: 0.8 %徐州: 0.2 %徐州: 0.2 %德黑兰: 0.2 %德黑兰: 0.2 %成都: 1.9 %成都: 1.9 %扬州: 0.2 %扬州: 0.2 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.9 %杭州: 0.9 %武汉: 0.3 %武汉: 0.3 %沈阳: 0.3 %沈阳: 0.3 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %深圳: 0.8 %深圳: 0.8 %湖州: 0.5 %湖州: 0.5 %漯河: 0.8 %漯河: 0.8 %烟台: 0.1 %烟台: 0.1 %眉山: 0.1 %眉山: 0.1 %石家庄: 0.1 %石家庄: 0.1 %绵阳: 3.6 %绵阳: 3.6 %芒廷维尤: 30.3 %芒廷维尤: 30.3 %芝加哥: 0.2 %芝加哥: 0.2 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.7 %衢州: 0.7 %襄阳: 0.1 %襄阳: 0.1 %西宁: 31.3 %西宁: 31.3 %西安: 1.3 %西安: 1.3 %西雅图: 0.1 %西雅图: 0.1 %诺沃克: 3.0 %诺沃克: 3.0 %贵阳: 0.3 %贵阳: 0.3 %费利蒙: 0.1 %费利蒙: 0.1 %运城: 2.0 %运城: 2.0 %郑州: 0.5 %郑州: 0.5 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.8 %重庆: 0.8 %长沙: 0.4 %长沙: 0.4 %长治: 0.1 %长治: 0.1 %青岛: 0.1 %青岛: 0.1 %鞍山: 0.2 %鞍山: 0.2 %鹰潭: 0.1 %鹰潭: 0.1 %其他其他ChinaRochesterSan LorenzoSan MateoUnited States[]上海东莞中山临汾丹东丽水保定兰州内江北京十堰南京台州合肥哈尔滨哈尔科夫哥伦布大连天津太原安康宜昌宣城常州常德广州张家口徐州德黑兰成都扬州晋城普洱杭州武汉沈阳洛阳济南深圳湖州漯河烟台眉山石家庄绵阳芒廷维尤芝加哥衡阳衢州襄阳西宁西安西雅图诺沃克贵阳费利蒙运城郑州鄂州重庆长沙长治青岛鞍山鹰潭

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article views (2185) PDF downloads(63) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return