Yu Qing, Zhang Hui, Ma Danni. Numerical analysis of plasma and shock wave characteristics of the discharge in liquid[J]. High Power Laser and Particle Beams, 2021, 33: 075001. doi: 10.11884/HPLPB202133.200321
Citation: Zhang Song, Wei Biao, Liu Yixin, et al. Monte Carlo simulation research on reference neutron radiation of 241Am-Be radionuclide[J]. High Power Laser and Particle Beams, 2020, 32: 056001. doi: 10.11884/HPLPB202032.190478

Monte Carlo simulation research on reference neutron radiation of 241Am-Be radionuclide

doi: 10.11884/HPLPB202032.190478
  • Received Date: 2019-12-22
  • Rev Recd Date: 2020-02-19
  • Publish Date: 2020-02-10
  • This paper presents the study on the 241Am-Be radionuclide sources reference neutron radiation field metrology characteristics for calibrating area neutron dose monitoring instruments. The Monte Carlo method was used to simulate the neutron ambient dose equivalent rate, scattering neutron proportion and neutron energy spectrum distribution at different points of test in the air free-field reference neutron radiation (FRNR), the minimum size of standard reference neutron radiation (SRNR) specified in GB/T 14055 series standards and the actual reference neutron radiation (ARNR). The results show that air has little effect on the dose rate and energy spectrum distribution in FRNR, which is approximately an ideal reference neutron radiation; the minimum size SRNR shielded by polyethylene containing 5% boron can decrease thermal neutrons and reduce the proportion of scattered neutrons. The shadow-cone method is not suitable for the correction of scattered neutrons in small-sized reference neutron radiation; scattering neutrons in ARNR are fewer and have a lower proportion, and the proportion of scattered neutrons obtained by shadow-cone method is basically consistent with the theoretical values.

  • [1]
    杨元第, 李德红. 电离辐射计量发展概况[C]//辐射防护分会2012年学术年会论文集. 2012: 17-20.

    Yang Yuandi, Li Dehong. Development of ionizing radiation measurement[C]//Proceedings of the 2012 Annual Conference of the Radiation Protection Branch. 2012: 17-20
    [2]
    张辉, 樊成, 龚晓明. 采用放射性核素中子源的中子参考辐射装置[J]. 计量学报, 2011, 32(6):559-563. (Zhang Hui, Fan Cheng, Gong Xiaoming. The device of the neutron reference radiation with radionuclide neutron sources[J]. Acta Metrologica Sinica, 2011, 32(6): 559-563 doi: 10.3969/j.issn.1000-1158.2011.06.17
    [3]
    Yun H K, Hyeonseo P, Yong K K, et al. Reference thermal neutron field at KRISS for calibration of neutron detectors[J]. Radiation Measurement, 2017, 107: 3-79.
    [4]
    Dreyzin V E, Grimov A A, Logvinov D I. Creating reference neutron fields for calibration of neutron spectrometers and computing their spectra[J]. Journal of Applied Spectroscopy, 2018, 85(4): 680-685. doi: 10.1007/s10812-018-0704-7
    [5]
    JJG 852-2006, 中华人民共和国国家计量检定规程中子周围计量当量(率)仪[S].

    JJG 852-2006, People’s Republic of China national verification procedures: Neutron ambient dose equivalent(rate) meters[S]
    [6]
    David T, Roberto B, Roberto M, et al. Revision of ISO 8529—reference neutron radiations[J]. Radiation Protection Dosimetry, 2018, 180(1/4): 21-24.
    [7]
    李景云. 参考中子辐射与辐射防护中子测量装置校准[J]. 辐射防护通讯, 2003, 23(6):8-23. (Li Jingyun. Reference neutron radiation and calibration of measuring device for radiation protection purpose[J]. Radiation Protection Bulletin, 2003, 23(6): 8-23 doi: 10.3969/j.issn.1004-6356.2003.06.002
    [8]
    骆海龙, 刘毅娜, 王志强, 等. 中子剂量仪表校准的本底扣除方法研究[J]. 辐射防护, 2012, 32(5):273-276. (Luo Hailong, Liu Yina, Wang Zhiqiang, et al. Comparison of response with different background subtracting methods in neutron dosemeter calibration[J]. Radiation Protection, 2012, 32(5): 273-276
    [9]
    Komar D, Kutsen S. Influence of scattered neutron radiation on metrological characteristics of AT140 neutron calibration facility[J]. Devices and Methods Measurements, 2017, 8(1): 23-31.
    [10]
    霍雷, 刘剑利, 马永和. 辐射剂量与防护[M]. 北京: 电子工业出版社, 2015: 139.

    Huo Lei, Liu Jianli, Ma Yonghe. Radiation dose and protection[M]. Beijing: Publishing House of Electronics Industry, 2015: 139
    [11]
    GB/T 14055.1-2008, 中子参考辐射第1部分: 辐射特性和产生方法[S].

    GB/T 14055.1-2008, Reference neutron radiations—Part 1: Characteristics and methods of production[S]
    [12]
    ISO 8529-1: 2001(E), Reference neutron radiations—Part 1: Characteristics and methods of production[S].
    [13]
    GB/T 14055.2-2012, 中子参考辐射第2部分: 与表征辐射场基本量相关的辐射防护仪表校准基础[S].

    GB/T 14055.2-2012, Reference neutron radiations—Part 2: Calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field[S]
    [14]
    ISO 8529-2: 2000(E), Reference neutron radiations—Part 2: Calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field[S].
    [15]
    刘毅娜, 王志强, 徐科, 等. 亚太地区中子周围剂量当量(率)仪的校准比对[J]. 原子能科学技术, 2016, 50(1):181-187. (Liu Yina, Wang Zhiqiang, Xu Ke, et al. APMP key comparison for calibration of neutron ambient dose equivalent meter[J]. Atomic Energy Science and Technology, 2016, 50(1): 181-187 doi: 10.7538/yzk.2016.50.01.0181
    [16]
    Pereira W W, Estrada J J S, Patrao K C S, et al. 241Am-Be(α, n) characterization for a new laboratory facility in Brazil[J]. Radiation Protection Dosimetry, 2018, 180(1/4): 29-32.
    [17]
    文德智, 雷家荣, 卓仁鸿, 等. 用于中子剂量当量仪校准的同位素中子参考辐射的建立[J]. 中国核科技报告, 2005(1):119-127. (Wen Dezhi, Lei Jiarong, Zhuo Renhong, et al. The establishment of a radionuclide neutron reference radiations for calibrating neutron dose equivalent devices[J]. China Nuclear Science and Technology Report, 2005(1): 119-127
    [18]
    The International Commission on Radiation Protection. Conversion coefficients for use in radiological protection against external radiation[R]. ICRP Publication 74, 1996: 200.
    [19]
    陈飞达, 唐晓斌, 王鹏, 等. 基于蒙特卡罗方法的中子屏蔽材料设计[J]. 强激光与粒子束, 2012, 24(12):3006-3010. (Chen Feida, Tang Xiaobin, Wang Peng, et al. Neutron shielding material design based on Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2012, 24(12): 3006-3010 doi: 10.3788/HPLPB20122412.3006
    [20]
    Campo X, Mendez R, Lacerda M A S, et al. Experimental evaluation of neutron shielding materials[J]. Radiation Protection Dosimetry, 2018(1/4): 382-385.
    [21]
    周红召, 刘海侠, 李坚, 等. 中子剂量校准实验室室散射影响因素的蒙卡仿真研究[C]//第十七届全国核电子学与核探测技术学术年会论文集. 2014: 592-59.

    Zhou Hongzhao, Liu Haixia, Li Jian, et al. Monte Carlo simulation of factors influencing room-return in neutron calibration laboratory[C]//Proceedings of the 17th National Conference on Nuclear Electronics and Nuclear Detection Technology. 2014: 592-59
  • Relative Articles

    [1]Wu Min’gan, Liu Yi, Lin Fuchang, Liu Siwei, Sun Jianjun. Characteristics analysis of electrohydraulic shockwave[J]. High Power Laser and Particle Beams, 2020, 32(4): 045002. doi: 10.11884/HPLPB202032.190356
    [2]Yu Liang, Sugai Taichi, Tokuchi Akira, Jiang Weihua. Repetitive pulsed power generator based on inductive-energy-storage pulse forming line[J]. High Power Laser and Particle Beams, 2018, 30(2): 025006. doi: 10.11884/HPLPB201830.170390
    [3]Luo Kui, Fu Sizu, Huang Xiuguang, He Zhiyu, Jia Guo, Shu Hua, He Hao, Xia Miao. Electrical conductivity of liquid deuterium under laser-driven shock loading[J]. High Power Laser and Particle Beams, 2017, 29(08): 082002. doi: 10.11884/HPLPB201729.170564
    [4]Jiang Weihua. Repetition rate pulsed power technology and its applications:(vii) Major challenges and future trends[J]. High Power Laser and Particle Beams, 2015, 27(01): 010201. doi: 10.11884/HPLPB201527.010201
    [5]Jiang Weihua. Repetition rate pulsed power technology and its applications:(ⅵ) Typical applications[J]. High Power Laser and Particle Beams, 2014, 26(03): 030201. doi: 10.3788/HPLPB201426.030201
    [6]Jiang Weihua. Repetition rate pulsed power technology and its applications:(iv) Advantage and limitation of semiconductor switches[J]. High Power Laser and Particle Beams, 2013, 25(03): 537-543. doi: 10.3788/HPLPB20132503.0537
    [7]Jiang Weihua. Repetition rate pulsed power technology and its applications:(Ⅴ) The implication of pulse adding[J]. High Power Laser and Particle Beams, 2013, 25(08): 1877-1882. doi: 10.3788/HPLPB20132508.1877
    [8]Chen Wen, Fan Chengyu, Wang Haitao, Zhang Pengfei, Zhang Jinghui, Qiao Chunhong, Ma Huimin. Numerical study on prolonging lifetime of plasma channels generated by ultra-short laser pulses[J]. High Power Laser and Particle Beams, 2013, 25(04): 813-816.
    [9]Jiang Weihua. Repetition rate pulsed power technology and its applications: (i) Introduction[J]. High Power Laser and Particle Beams, 2012, 24(01): 10-15.
    [10]Jiang Weihua. Repetition rate pulsed power technology and its applications: (iii) The role of magnetic switches[J]. High Power Laser and Particle Beams, 2012, 24(06): 1269-1275. doi: 10.3788/HPLPB20122406.1269
    [11]Wang Haitao, Fan Chengyu, Shen Hong, Qiao Chunhong, Zhang Jinghui, Zhang Pengfei, Ma Huimin, Xu Huiling. Temporal evolution of plasma density in femtosecond light filaments[J]. High Power Laser and Particle Beams, 2012, 24(05): 1024-1028. doi: 10.3788/HPLPB20122405.1024
    [12]Tong Xin, Li Xiao’ang, Zhao Junping, Zhang Qiaogen. Arc radius and resistance measurement of spark gap switch[J]. High Power Laser and Particle Beams, 2012, 24(03): 647-650. doi: 10.3788/HPLPB20122403.0647
    [13]zhang zehai, shu ting, zhang jun, liu jing, zhu jun. Suppression of parasitic mode oscillation in relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [14]jin zhaoxin, jiao qingjie, chen xi, jing xiaopeng. Helical flux compression generator utilizing detonation products of aluminized explosive to compress magnetic flux[J]. High Power Laser and Particle Beams, 2010, 22(11): 0- .
    [15]jiang weihua. High repetition-rate pulsed power generation using solid-state switches[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- .
    [16]tang enling, zhang qingming, zhang jian. Conductivity measurement of an expanding plasma cloud generated by hypervelocity impact LY12 aluminum target[J]. High Power Laser and Particle Beams, 2009, 21(02): 0- .
    [17]li sheng-yin, wu wei-dong, wang feng, wang xue-min, tang yong-jian, sun wei-guo. Effects of Fe-embedding on microstructure and electrical properties of diamond like carbon films[J]. High Power Laser and Particle Beams, 2008, 20(12): 0- .
    [18]gao jing-ming, liu yong-gui, yin yi, yang jian-hua. Numerical simulation of gas spark gap discharge[J]. High Power Laser and Particle Beams, 2007, 19(06): 0- .
    [19]lin chen, zhang li-wen, qin xiao, gao jun-yi. Conductivity of self-guided laser plasma channel produced by femtosecond laser pulses in air[J]. High Power Laser and Particle Beams, 2007, 19(05): 0- .
    [20]xie wei-ping, gong xing-gen, hao shi-rong, sun qi-zhi, liu lie-fang, dai wen-feng, liu zheng-fen, wang min-hua, han wen-hui, dai ying-ming, ding bo-nan. The generation of high Voltage by MFCG through combined Pulse power conditioning system[J]. High Power Laser and Particle Beams, 2001, 13(03): 0- .
  • Cited by

    Periodical cited type(1)

    1. 张文强,罗宇轩,杨长河. 等离子体技术在活性炭再生中的研究进展. 现代化工. 2023(S1): 49-53+58 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 33.3 %FULLTEXT: 33.3 %META: 61.1 %META: 61.1 %PDF: 5.6 %PDF: 5.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.4 %其他: 4.4 %其他: 1.2 %其他: 1.2 %China: 0.4 %China: 0.4 %France: 0.8 %France: 0.8 %Germany: 0.2 %Germany: 0.2 %India: 0.1 %India: 0.1 %Japan: 0.5 %Japan: 0.5 %Nahant: 0.2 %Nahant: 0.2 %Netherlands: 0.2 %Netherlands: 0.2 %United States: 0.2 %United States: 0.2 %[]: 0.7 %[]: 0.7 %三明: 0.1 %三明: 0.1 %上海: 3.2 %上海: 3.2 %东莞: 0.1 %东莞: 0.1 %中山: 0.1 %中山: 0.1 %丹东: 0.1 %丹东: 0.1 %保定: 0.1 %保定: 0.1 %兰州: 0.1 %兰州: 0.1 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %北京: 3.5 %北京: 3.5 %十堰: 0.1 %十堰: 0.1 %南京: 0.1 %南京: 0.1 %南通: 0.1 %南通: 0.1 %台州: 0.3 %台州: 0.3 %合肥: 0.4 %合肥: 0.4 %哥伦布: 0.4 %哥伦布: 0.4 %嘉兴: 0.1 %嘉兴: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.4 %大连: 0.4 %天津: 0.4 %天津: 0.4 %宜春: 0.1 %宜春: 0.1 %宣城: 0.2 %宣城: 0.2 %常州: 0.2 %常州: 0.2 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.1 %广州: 0.1 %开封: 0.1 %开封: 0.1 %弗吉尼亚州: 0.1 %弗吉尼亚州: 0.1 %张家口: 0.4 %张家口: 0.4 %徐州: 0.1 %徐州: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 0.7 %成都: 0.7 %扬州: 0.3 %扬州: 0.3 %新乡: 0.1 %新乡: 0.1 %新加坡: 0.2 %新加坡: 0.2 %无锡: 0.4 %无锡: 0.4 %昌吉: 0.1 %昌吉: 0.1 %普洱: 0.1 %普洱: 0.1 %普赖恩维尔: 0.2 %普赖恩维尔: 0.2 %杜伊斯堡: 0.1 %杜伊斯堡: 0.1 %杭州: 0.8 %杭州: 0.8 %梅州: 0.1 %梅州: 0.1 %武威: 0.1 %武威: 0.1 %武汉: 2.3 %武汉: 2.3 %沃思堡: 0.2 %沃思堡: 0.2 %沈阳: 0.5 %沈阳: 0.5 %泉州: 0.1 %泉州: 0.1 %泸州: 0.1 %泸州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %深圳: 0.4 %深圳: 0.4 %温州: 0.1 %温州: 0.1 %湖州: 0.4 %湖州: 0.4 %湘潭: 0.1 %湘潭: 0.1 %漯河: 1.1 %漯河: 1.1 %烟台: 0.1 %烟台: 0.1 %石家庄: 0.9 %石家庄: 0.9 %福州: 0.7 %福州: 0.7 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽瓦克: 0.4 %纽瓦克: 0.4 %纽约州: 0.1 %纽约州: 0.1 %绵阳: 0.3 %绵阳: 0.3 %芒廷维尤: 22.3 %芒廷维尤: 22.3 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.1 %苏州: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 39.7 %西宁: 39.7 %西安: 1.7 %西安: 1.7 %贵阳: 0.3 %贵阳: 0.3 %运城: 1.2 %运城: 1.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.4 %郑州: 0.4 %重庆: 0.5 %重庆: 0.5 %长沙: 1.9 %长沙: 1.9 %长治: 0.1 %长治: 0.1 %青岛: 0.1 %青岛: 0.1 %其他其他ChinaFranceGermanyIndiaJapanNahantNetherlandsUnited States[]三明上海东莞中山丹东保定兰州加利福尼亚州北京十堰南京南通台州合肥哥伦布嘉兴大庆大连天津宜春宣城常州平顶山广州开封弗吉尼亚州张家口徐州惠州成都扬州新乡新加坡无锡昌吉普洱普赖恩维尔杜伊斯堡杭州梅州武威武汉沃思堡沈阳泉州泸州洛阳济南深圳温州湖州湘潭漯河烟台石家庄福州秦皇岛纽瓦克纽约州绵阳芒廷维尤芝加哥苏州衢州西宁西安贵阳运城邯郸郑州重庆长沙长治青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article views (1917) PDF downloads(78) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return