Volume 32 Issue 7
Jun.  2020
Turn off MathJax
Article Contents
Wang Zhenchun, Dong Zonghao, Bao Zhiyong, et al. Simulation and experimental study on high velocity control of armature in bore[J]. High Power Laser and Particle Beams, 2020, 32: 075006. doi: 10.11884/HPLPB202032.200020
Citation: Wang Zhenchun, Dong Zonghao, Bao Zhiyong, et al. Simulation and experimental study on high velocity control of armature in bore[J]. High Power Laser and Particle Beams, 2020, 32: 075006. doi: 10.11884/HPLPB202032.200020

Simulation and experimental study on high velocity control of armature in bore

doi: 10.11884/HPLPB202032.200020
  • Received Date: 2020-01-15
  • Rev Recd Date: 2020-05-13
  • Publish Date: 2020-06-24
  • During the launching of electromagnetic railgun, movement of the armature will be influenced by many factors, such as electromagnetic force, armature initial positive pressure, friction force, air resistance and electrical erosion resistance when the armature is moving in the bore. The muzzle velocity of the armature will fluctuate in a certain range. To improve the precision of the muzzle velocity of the armature, based on the character of the uncertainty of friction and ablation degree of armature and rail, this paper presents a simulation model for the open loop control of the armature in the bore, considering the dynamic characteristics of the circuit model and armature. The relationship between the discharge time interval and muzzle velocity of the armature is obtained by simulation, the armature velocity closed loop control model is put forward, and the feasible scheme of armature velocity control is explored. The simulation results show that the closed-loop control can improve the control precision of the muzzle velocity of the armature.
  • loading
  • [1]
    Li Jun, Li Shizhong, Liu Peizhu, et al. Design and testing of a 10-MJ electromagnetic launch facility[J]. IEEE Trans Plasma Science, 2011, 39(4): 1187-1191. doi: 10.1109/TPS.2011.2110649
    [2]
    Wang Ying, Chen Shukang, Zheng Ping. Widely developing electric launch technology in China[J]. IEEE Trans Magnetics, 2003, 39(1): 39-41. doi: 10.1109/TMAG.2002.805914
    [3]
    关永超, 邹文康, 何勇, 等. 串联型双轨增强电磁轨道炮电路模拟[J]. 强激光与粒子束, 2014, 26:115001. (Guan Yongchao, Zou Yongkang, He Yong, et al. Circuit simulation of series double rail enhanced electromagnetic railgun[J]. High Power Laser and Particle Beams, 2014, 26: 115001
    [4]
    赵莹, 徐蓉, 袁伟群, 等. 脉冲大电流电磁轨道发射装置特性[J]. 强激光与粒子束, 2014, 26:095004. (Zhao Ying, Xu Rong, Yuan Weiqun, et al. Characteristics of high current pulse electromagnetic track launcher[J]. High Power Laser and Particle Beams, 2014, 26: 095004
    [5]
    刘福才, 王世国, 王振春, 等. 电磁发射测量系统的设计与实现[J]. 兵工学报, 2008, 29(10):1256-1261. (Liu Fucai, Wang Shiguo, Wang Zhenchun, et al. Design and realization of an electromagnetic launch measurement system[J]. Acta Armamentarii, 2008, 29(10): 1256-1261 doi: 10.3321/j.issn:1000-1093.2008.10.021
    [6]
    何勇, 宋盛义, 关永超, 等. 电磁轨道炮高速滑动接触电阻的定量表征[J]. 强激光与粒子束, 2014, 26:045007. (He Yong, Song Shengyi, Guan Yongchao, et al. Quantitative expression of sliding contact resistance between armature and rail in railgun[J]. High Power Laser and Particle Beams, 2014, 26: 045007
    [7]
    徐伟东, 袁伟群, 陈允, 等. 电磁轨道发射器连续发射的滑动电接触[J]. 强激光与粒子束, 2012, 24(3):668-672. (Xu Weidong, Yuan Weiqun, Chen Yun, et al. Sliding electrical contact performance of electromagnetic launcher system in rapid fire mode[J]. High Power Laser and Particle Beams, 2012, 24(3): 668-672 doi: 10.3788/HPLPB20122403.0668
    [8]
    Stefani F, Parker J V, Watt T. Progress on developing the “magnetic obturator”, a novel railgun armature[J]. IEEE Trans Magnetics, 2003, 39(1): 86-91. doi: 10.1109/TMAG.2002.805889
    [9]
    Fair H D. Progress in electromagnetic launch science and technology[J]. IEEE Trans Magnetics, 2007, 43(1): 93-98. doi: 10.1109/TMAG.2006.887596
    [10]
    Wang Min, Cao Yanjie, Wang Chenxue, et al. Trigger control research of electromagnetic coil launcher based on real-time velocity measurement[J]. IEEE Trans Plasma Science, 2016, 44(5): 885-888. doi: 10.1109/TPS.2016.2535409
    [11]
    Siaenen T, Schneider M G, Loffler M J. Rail gun muzzle velocity control with high accuracy[J]. IEEE Trans Plasma Science, 2011, 39(1): 133-137. doi: 10.1109/TPS.2010.2052072
    [12]
    Batteh J H. Arc-dynamics calculations in the railgun[R]. Georgia: Science Applications, 1983.
    [13]
    Batteh J H, Powell J D. Analysis of plasma arcs in arc-driven railgun[J]. IEEE Trans Magnetics, 1984, 20(2): 336-339. doi: 10.1109/TMAG.1984.1063098
    [14]
    Su Zizhou, Guo Wei, Zhang Tao, et al. Design and simulation of a large muzzle kinetic energy railgun[J]. IEEE Trans Plasma Science, 2013, 41(5): 1416-1420. doi: 10.1109/TPS.2013.2251364
    [15]
    王振春, 鲍志勇, 曹海要, 等. 增强型电磁轨道炮电枢轨道接触特性研究[J]. 兵工学报, 2018, 39(3):451-456. (Wang Zhenchun, BaoZhiyong, Cao Haiyao, et al. Research on contact characteristics of armature and rail in augmented electromagnetic railgun[J]. Acta Armamentarii, 2018, 39(3): 451-456 doi: 10.3969/j.issn.1000-1093.2018.03.005
    [16]
    靳智, 沈培辉, 刘凯. 电磁轨道炮电枢的运动特性研究[J]. 兵工自动化, 2013(12):1-3, 32. (Jin Zhi, Shen Peihui, Liu Kai. Research on kinetic characteristic of armature of electromagnetic rail gun[J]. Ordnance Industry Automation, 2013(12): 1-3, 32 doi: 10.7690/bgzdh.2013.12.001
    [17]
    王莹, 肖峰. 电磁炮原理[M]. 北京: 国防工业出版社, 1995: 2-40.

    Wang Ying, Xiao Feng. Principle of electromagnetic gun[M]. Beijing: National Defense Industry Press, 1995: 2-40
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views (1194) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return